COMPACTION TEST REPORT

Curve No.: 101

Project No.: 03-100

Date: 4/2/03

Project: Unical Edmonds

Location:

Elev,/Depth:

Sample No. 1

Remarks: tested/calculated by m.holtz

reviewed by a. halo

MATERIAL DESCRIPTION

Description: import drk med sand w/ 1 1/2" agg

Classifications -

USCS:

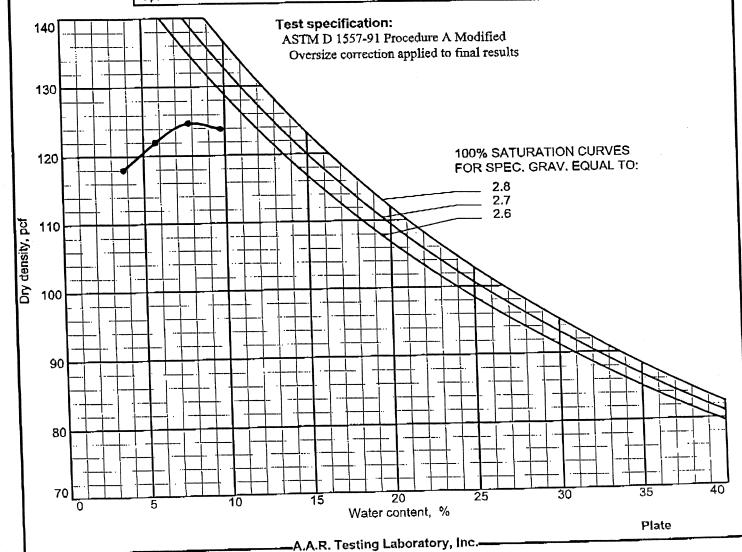
AASHTO:

Nat. Moist. =

Sp.G. = 2.64

Liquid Limit =

Plasticity Index =


% > No.4 = 11.8 %

% < No.200 = 0.0 %

TEST RESULTS

Maximum dry density = 128.4 pcf

Optimum moisture = 7.1 %

Fireproofing
Aggregates
Shotorete
Concrete
Masonry
Asphalt
Roofing
Piling
Steel
Soils
Wood

May 30th 2003

A.A.R. TESTING LABORATORY, INC.

CONSTRUCTION INSPECTION AND MATERIAL TESTING NATIONALLY ACCRETED LABORATORY

Everett, WA 98208

Altn: Randy

Wyser Construction

Project: Edmonds Unocal

1720 100th Place SE, Suite 101

Subject: On Site Nuclear Density Testing

This is to advise you that A.A.R. Testing Laboratory was on site at the Edmonds Unocal for periodic nuclear density testing per the request of Wyser Construction. Modified proctors were ran for different materials tested including clay materials, which ended up not being used for back fill. Please refer to the table on page 2 for proctor information. The majority of material tested was sand, supplied by Rinker Materials. All noted nuclear density test locations were found to be in conformance with a 90% compaction requirement and 95% compaction requirement for final lifts. Please reference the reports from the following table.

1/7/03	4954
1/8/03	4955
1/9/03	4842
1/10/03	3005
1/13/03	4844
2/7/03	4935
2/10/03	4218
2/12/03	4989
2/17/03	4936
2/21/03	3027
2/24/03	4959, 4961, 4960,
	3037
2/25/03	3032
2/27/03	4970, 3034,
	3035,5000
2/28/03	4963, 4962, 3039
3/5/03	3097, 3096
3/31/03	3087
4/1/03	4185, 3003
4/2/03	3089
4/8/03	3118
4/9/03	3072

Tel: (425) 881-5812 Fax (425) 881-5441 • 7126 180th Ave. NE • P.O. Box 2523 • Redmond, WA 98073

HERARIERI EFER	
4/10/03	3095
4/11/03	3117, 3116
4/14/03	3119
4/15/03	3111, 3121, 3122, 3110
4/18/03	3192, 3195, 3194
4/21/03	3188, 3186, 3187
4/22/03	3136, 3123, 3120
4/23/03	3177, 3189
4/25/03	3198
4/28/03	3137
5/2/03	3138, 3139
5/5/03	3212
5/7/03	3202
5/12/03	3216, 3217
5/15/03	3201, 3200
5/21/03	3126, 3125 , 3124

	STREET AND A STREET	
Sand with minimal aggregate	112.4 @ 7.6%	011
Brown Clay soil mix	127.0 @ 10.4%	012
Fine Sand	105.2 @ 6.0%	018
Dark medium sand w/ 1 ½" aggregate	128.4 @ 7.1%	101
Fine silty sand w/minimal aggregate	116.8 @ 6.5%	104
Brown Clay	114.4 @ 17.0%	135
Dark grayish Clay	111.7 @ 17.8%	136

A.A.R. Testing Laboratory, Inc.

Jerry Anderson Technical Director

A.A.R. TESTING LABORATORY, INC.

Park 180 Suite C101 Redmond, WA A.A.R. Testing Laboratory Inc. 7/26/180th Ave. N.E.

Client:

Wyser Construction

Project Number

03-100

Contact: Address:

17125 Sunset Road

Project Name:

Edmonds Unocal

Address:

Pine Street

Bothell, WA 98012

Permit Number:

NA

Date:

5/12/03

Time:

10:30:00 AM

🚛 🔍 Material Data 💴

Material Description: Sand with minimal agg

Layer Thickness:

Unknown

Source:

Rinker

Compaction Method: Vibratory Roller

Secret Device -

Nuclear Gauge:

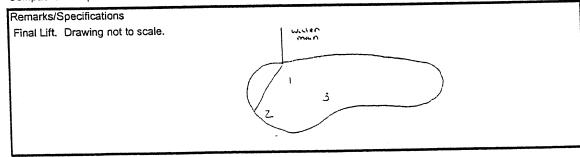
Troxler 3430 21240

Test Methods:

Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter

Modified Proctor ASTM D1557


	Santale Court	Company of the Co.
Density Count:	2236 Moisture Count:	650
		on otion

	Modified 1 100tol 1 to 1 to 1					
Test #	Locations/Elevations	Wet Density M	oisture%	Dry Density	Lab Density %0	Compaction
1 To	op of water main See sketch	118.9	9.7	108.4	112.4	96%
2	v 1	117.5	8.6	108.2	112.4	96%
3	↓	118.8	9.2	108.8	112.4	97%

Compaction Requirements:

✓ Conformance

☐ Non Conformance

✓ Distribute Client

Distribute Other 1

Reviewed By:

Hale, Alan

Distribute Engineer

Distribute Other 2

Tested By:

Norgar, Jason NO

Distribute Municipality Distribute Contractor

Distribute Other 3

Test results indicate the density of the material at the above indicated locations, at the time

Distribute Architect

AAR Testing is strictly forbidden.

and conditions when the test was conducted. All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. .Reproduction except in full, without the written consent of

Report Number 3216

A.A.R. Testing Laboratory, Inc. 7126180th Ave. N.E. Park 180, Suite C101, Redmond, WA

Client:

Wyser Construction

Project Number

03-100

Contact:

Project Name:

Edmonds Unocal

Address:

17125 Sunset Road

Address:

Pine Street

Bothell, WA 98012

Permit Number:

NA

Date:

5/12/03

Time:

7:35:00 AM

Material Data

Material Description: Sand with minimal agg

Layer Thickness:

Unknown

Source:

Rinker

Compaction Method: Vibratory Roller

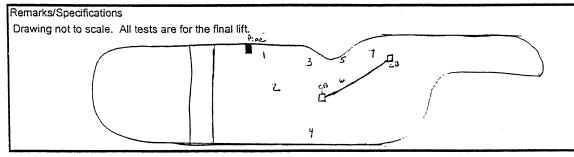
Test Device

Nuclear Gauge: Troxler 3430 21240

Test Methods:

Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter


Laboratory restriction to the second

		Section Print	Professional description (activity a democratic state of the			
	Modified Proctor ASTM D1557	Den	Density Count:		Moisture Cour	nt: 650
Test#	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density %	6Compaction
1	North half of pit #2604 Final grade See sketch	114.6	6.9	107.2	112.4	95%
2		115.4	8 4	106.9	112.4	95%
3		116.6	7.5	108.5	112.4	97%
4		116	5 8	107.4	112.4	96%
5	South half of pit 2604 top of CB See sketch	114.5	5 6.8	107.2	112.4	95%

Compaction Requirements:

95 %

✓ Conformance ☐ Non Conformance

✓ Distribute Client

Distribute Other 1

Reviewed By:

Hale, Alan

Distribute Engineer

Distribute Other 2

Tested By:

Norgar, Jason NO

Distribute Municipality: Distribute Contractor Distribute Architect

Distribute Other 3

Test results indicate the density of the material at the above indicated locations, at the time and conditions when the test was conducted.

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. .Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

Report Number 3216

Park 180 Suite @101-Redmond, W A.A.R. Testing Laboratory 03-100 **Project Number** Wyser Construction Client: Edmonds Unocal

Contact:

17125 Sunset Road Address:

Bothell, WA 98012

Date:

5/12/03

Project Name:

Address:

Pine Street

NA

Permit Number:

Time:

7:35:00 AM

Material Data Material

Material Description: Sand with minimal agg

Layer Thickness:

Unknown

Source:

Rinker

Compaction Method: Vibratory Roller

Patest Device

Nuclear Gauge:

Troxler 3430 21240

Test Methods:

Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter

Laboratory Test Method.

100000	*****		Strate Charles
Modified Proctor ASTM D1557			
 		Leastions/Elevations	W

Den	sity Count:	2236	Moisture Count:	650
nsity	Moisture%	Dry Density	Lab Density %Com	paction

	1110411104 1 1001101 1 1					
Test #	Locations/Elevations	Wet Density Moisture%	Dry Density	Lab Density	%Compaction	_
6	. 1	115.6 7.5	2 107.8	112.4	96%	
7	1	111.7 4.	9 106.5	112.4	95%	

Compaction Requirements:

Remarks/Specifications Drawing not to scale. All tests are for the final lift.

Y	Distribute	Client
:	Distribute	Engineer

Distribute Other 1

Reviewed By: Tested By:

Hale, Alan

Distribute Municipality

Distribute Other 2 Distribute Other 3 Norgar, Jason NO

Distribute Contractor Distribute Architect

Test results indicate the density of the material at the above indicated locations, at the time and conditions when the test was conducted.

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. .Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

Field Report

Report Number:

中国的人的复数形式 人名英格兰斯拉特拉克拉斯

34664

A.A.R. Testing Laboratory, Inc. 7126 180th Ave.N.E., Park 180, Suite C101, Redmond, WA 98052: Phone 425.881 5812 Fax 425.881.5441.

Client: Wyser Construction

Project Number: 03-

17125 Sunset Road

Permit #: NA

NA

Bothell, WA 98012

Project Name:

Edmonds Unocal

Contact:

Address:

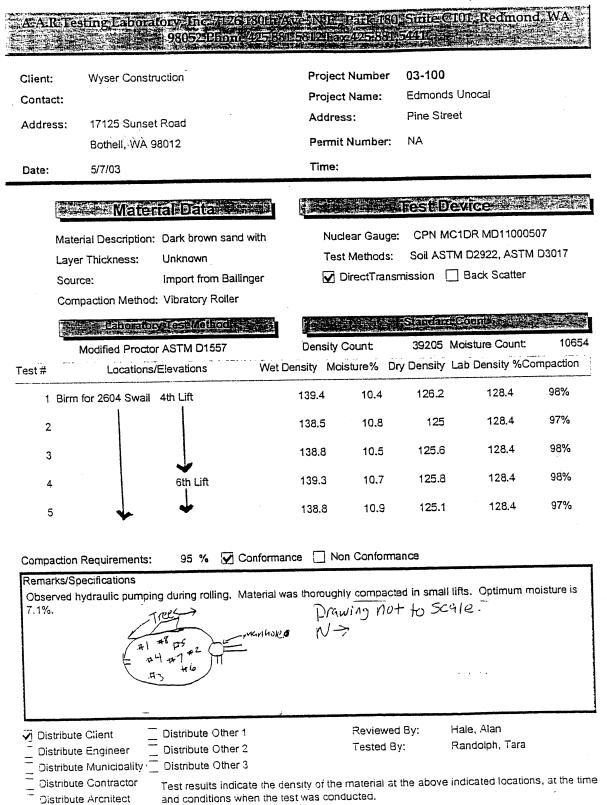
Pine Street

Date:

5/5/03

Time:

12:30:00 PM


Temperature:

50

Arrived onsite at 7:30 AM for scheduled compaction testing. Contractor notified me that testing was not suppose to be until the next day but he would have some other material to test in about 2 hours. I drove to lab and returned to job site at 10:00 AM. Waited onsite until 12:30 PM without taken any tests and then was dispatched to another job.

Distribution:	Distribute Client Distribute Engineer	Distribute Contractor Distribute Owner	Inspector: Reviewed by:	Flint, Sean FLI 90 4238 Kim Anderson	
	Distribute MunicipalityDistribute Architect		Reviewed by.	Tani / Tradison	

Report Number 3202

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. .Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

Report Number 3202

A.A.R. Testing Laboratory, Inc. 7:126 180th Ave. N.E. Park 180, Suite C101, Redmond, WA 98052 Phone

Client:

Wyser Construction

Project Number

03-100

Contact:

Project Name:

Edmonds Unocal

Address:

17125 Sunset Road

Address:

Pine Street

Bothell, WA 98012

Permit Number:

NA

Date:

5/7/03

Time:

Material Data 2000

Material Description: Dark brown sand with

Layer Thickness:

Source:

Unknown

Compaction Method: Vibratory Roller

Import from Ballinger

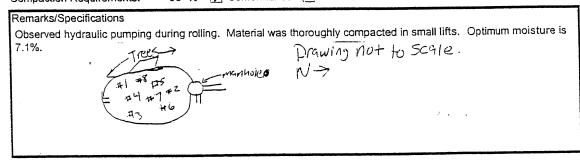
Test Device Test Device

CPN MC1DR MD11000507 Nuclear Gauge:

Standard Count () **

Test Methods:

Soil ASTM D2922, ASTM D3017


✓ DirectTransmission ☐ Back Scatter

and the second second second second	ŀ
	4
	-
A US I D I A OTH DAKET	

					ETA reserve to the	A 7 (1 E SA 7 E SA	STATE OF THE PERSON NAMED IN COLUMN
	Modified Proctor ASTM D1557 Locations/Elevations Wet		Den	Density Count:		Moisture Count	10654
Test#			Wet Density Moisture%		Dry Density	Lab Density %	Compaction
6	Birm for 2604 Swail	8th Lift	139.5	5 10.3	126.5	128.4	99%
. 7			139.2	2 10.4	126	128.4	98%
8			140	10.8	126.3	128.4	98%

Compaction Requirements:

✓ Conformance Non Conformance

/	Distribute	Client

Distribute Other 1

Reviewed By:

Hale, Alan

Distribute Engineer Distribute Municipality Distribute Other 2

Tested By:

Randolph, Tara

Distribute Contractor

Distribute Other 3

Test results indicate the density of the material at the above indicated locations, at the time

Distribute Architect

and conditions when the test was conducted.

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. .Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

Report Number 3126a

A.A.R Testing Laboratory, Inc. 7126-180th Ave. N.E., Park 180, Suite C101, Redmond, WA 98052 Phone 425 881 5812 Fax 425 881 5441

Client:

Wyser Construction

Project Number

03-100

Contact:

Project Name:

Edmonds Unocal

Address:

17125 Sunset Road

Address:

Pine Street

Bothell, WA 98012

Permit Number:

Date:

Test#

3

5/21/03

Time:

10:30:00 AM

Troxier 3430 21240

Material Data

Material Description: Sand with minimal agg

Layer Thickness:

Source:

Unknown

Rinker

Test Device

NA

Test Methods:

Nuclear Gauge:

Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter

Compaction Method: Vibratory Roller

Laboratory TestiMethod Modified Proctor ASTM D1557

Locations/Elevations

Standard Count 655 2240 Moisture Count: **Density Count:** Wet Density Moisture% Dry Density Lab Density %Compaction

1 Pit 2910 Final Grade

99% 7.4 111.8 112.4 120.1 112.4 95% 116.2 9.3 106.3 112.4 99% 111.8 121.6 8.7

Compaction Requirements:

Remarks/Specifications						
Drawing not to scale.				·	***	
	DINH		3	.b:+# Z410		

~	Distribute	Client
---	------------	--------

Distribute Other 1

Reviewed By:

Hale, Alan

Distribute Engineer

Distribute Other 2 Distribute Municipality Distribute Other 3 Tested By:

Norgar, Jason NO

Distribute Contractor

Test results indicate the density of the material at the above indicated locations, at the time and conditions when the test was conducted.

Distribute Architect

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. . Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

Report Number 3125a

100%

99%

100%

112.4

112.4

112.4

A.A.R Testing Laboratory, Inc. 7126 180th Ave. N.E., Park 180, Suite C101, Redmond, WA 98052 Phone 425.881.5812 Fax 425.881.5441

Client:

Wyser Construction

Project Number

03-100

Contact: Address:

Project Name:

Edmonds Unocal

17125 Sunset Road

Address:

Pine Street

Bothell, WA 98012

Permit Number:

NA

Date:

Test #

2

3

5/21/03

Time:

10:00:00 AM

112

111.8

112

Test Device **Material Data** Nuclear Gauge: Troxler 3430 21240 Material Description: Sand with minimal agg Soil ASTM D2922, ASTM D3017 Test Methods: Layer Thickness: Unknown ✓ DirectTransmission ☐ Back Scatter Source: Rinker Compaction Method: Vibratory Roller Standard Count Laboratory Test Method **Density Count:** 2240 Moisture Count: Modified Proctor ASTM D1557 Locations/Elevations Wet Density Moisture% Dry Density Lab Density %Compaction 123.9 11.9 110.7 112.4 98% 1 Pit #2911 Final grade

123.8

121.6

120.4

10.6

8.7

7.5

Compaction Requirements:	95 % 🗹 Conformance 📆 Non Conformance
Remarks/Specifications Drawing not to scale.	ASWIND & ASWI B-Z
	Francisco Converte incill
	2 >por 2011

☑ Distribute Client	Distribute Other 1	Reviewed By:	Hale, Alan
Distribute Engineer	Distribute Other 2	Tested By:	Norgar, Jason NO
Distribute Municipality	Distribute Other 3		
Distribute Contractor	Test results indicate the density of the n	naterial at the above	indicated locations, at the time
Distribute Architect	and conditions when the test was condu		

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. .Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

Report Number 3124

A.A.R Testing Laboratory, Inc. 7126 180th Ave. N.E., Park 180, Suite C101, Redmond, WA 98052 Phone 425.881.5812 Fax 425.881.5441

Client:	Wyser Const	ruction	Project	t Number	03-100		
Contact:		÷	Projec	t Name:	Edmonds Ur	nocal	
Address:	17125 Sunse	et Road	Addres	ss:	Pine Street		
	Bothell, WA	98012	Permit	Number:	NA		
Date:	5/21/03		Time:		8:00:00 AM		
	Mate	rial Data			Test Dev	ice	3 (34-)
Mat	erial Description	: Sand with minimal agg	Nuc	lear Gauge	: Troxler 343	80 21240	
Lay	er Thickness:	Unknown	Tes	t Methods:	Soil ASTM	D2922, ASTN	D3017
Sou	ırce:	Rinker	✓ (DirectTrans	mission 🗌 E	Back Scatter	
Cor	mpaction Method	d: Vibratory Roller					
	Laborato	ry Test Method			Standard Co	ount	The second secon
· ·	Modified Procto	or ASTM D1557	Density	Count:	2240 Moi	sture Count:	655
Test #	Locations	/Elevations Wei	t Density Mo	isture% D	ry Density Lab	Density %Co	ompaction
1 Old	2913 South of A	ASW #3 Final grade	117.5	10.1	106.7	112.4	95%
2	-	1	119.3	10.5	108	112.4	96%
3			121.6	8.7	111.8	112.4	99%
4			120.4	7.5	112 -	112.4	100%
5 No	rth of the AWSI	#3 Old pit #2913	120.2	8	111.2	112.4	99%
Compaction	n Requirements:	95 % 🗸 Conform	nance 🗌 No	on Conform	ance		
	Specifications		1				
Noticed th	ere was some c firm and unyield	lay mixed with sand which ing.	is believed to	be the cau	se of high mois	sture content.	Sand
		// 5	6		عَنْجُهِ (7	11#3	
			3				
				7 2_	010	2913	
Distribut	te Client	Distribute Other 1		Reviewed	i By: Hal	e, Alan	-
Distribu	te Engineer [te Municipality [Distribute Other 2 Distribute Other 3		Tested B		gar, Jason N	0
	te Contractor	Test results indicate the and conditions when the	density of the	material at	the above indi	cated location	ns, at the tim

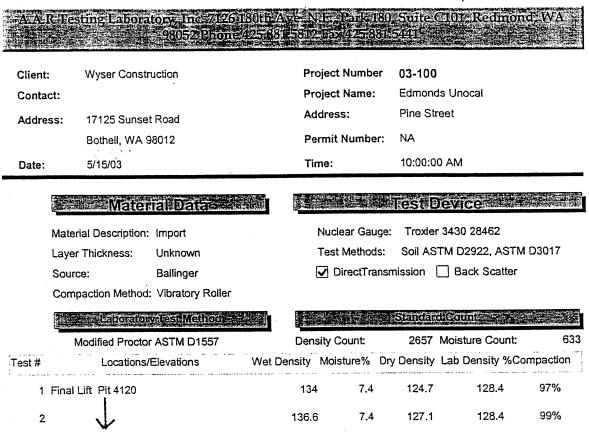
All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. .Reproduction except in full, without the written consent of AAR Testing is strictly forpidden.

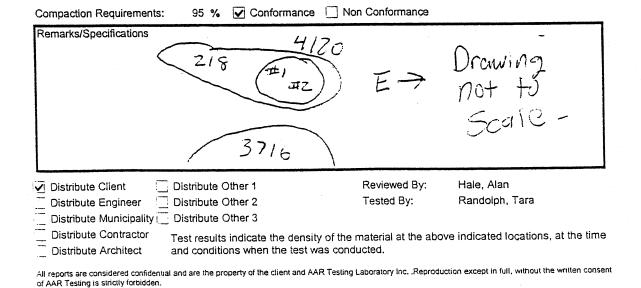
Field Density Report - Nuclear Method Report Number 3124

A.A.R Testing Laboratory, Inc. 7126 180th Ave. N.E., Park 180, Suite C101, Redmond, WA 98052 Phone 425.881.5812 Fax 425.881.5441

Client:	Wyser Const	truction		Project	Number	03-100		
Contac	t:	-		Project	Name:	Edmond	s Unocal	
Addres	s: -17125 Sunse	et Road		Address	s:	Pine Str	eet	
	Bothell, WA	98012		Permit !	Number:	NA		
Date:	5/21/03			Time:		8:00:00	AM	
	Mate	rial Data	Ę.		u e u	Test D	evice	# 1
1	Material Description	: Sand with minimal	agg	Nucle	ear Gauge:	Troxler	3430 21240	
1	Layer Thickness:	Unknown		Test	Methods:	Soil AS	TM D2922, ASTM	D3017
:	Source:	Rinker		✓ D	irectTransr	nission	Back Scatter	
	Compaction Method	d: Vibratory Roller						
	Laborato	ry Test Method		The state of the s		Standan	d Count	
	Modified Procto	or ASTM D1557		Density C	ount:	2240	Moisture Count:	655
Test#	Locations	/Elevations	Wet Den	sity Mois	ture% Dr	y Density	Lab Density %Co	mpaction
6	(1	131.9	17.8	111.9	112.4	100%
7	4		1	132.8	18.6	111.1	112.4	99%
				-				
	tion Requirements:	95 % 🗹 Cor	nformance	Non Non	Conforma	nce		
Noticed	s/Specifications I there was some cl ed firm and unyieldi	ay mixed with sand w ng.	hich is bel	lieved to b	e the caus	e of high r	moisture content.	Sand
☑ Distri	bute Client	Distribute Other 1			Reviewed	Ву:	Hale, Alan	
	bute Engineer	Distribute Other 2			Tested By:		Norgar, Jason NC)
	ibute Municipality ibute Contractor	Distribute Other 3						
	ibute Contractor	Test results indicate and conditions when				he above	indicated location	s, at the time

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. .Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.


Field Density Report - Nuclear Method Report Number 3201a


A.A.R Testing Laboratory, Inc. 7126 180th Ave. N.E., Park 180, Suite C101, Redmond, WA 98052 Phone 425:881 5812 Fax 425:881:5441

Client: Contact: Address: Date:	Wyser Construction 17125 Sunset Roa Bothell, WA 98012 5/15/03	ad	Project Project Address Permit Time:	Name: :: Number:	O3-100 Edmonds Un Pine Street NA 10:00:00 AM	1	
Lay Sou	Material merial Description: San mer Thickness: 2' murce: Rin mpaction Method: Vib	nd with minimal agg	Test ✓ Di	ear Gauge Methods: irectTrans	Soil ASTM	30 28462 D2922, ASTM Back Scatter	
	LaboratoryTe	st:Method		on the second	Standard Co		
,_	Modified Proctor AS		Density C			sture Count:	633
Test #	Locations/Elev	ations We	t Density Mois	ture% D	ry Density Lat	Density %Co	mpaction
1 AC	Swale East of water r	nain	117.5 116.1	6.4 6.8	110.4	112.4 112.4	98% 97%
3			134.6	13.8	118.3	128.4	92%
4	\downarrow		138.3	13.9	121.4	128.4	95%
Remarks/S Tests 1 ar during roll	n Requirements: Specifications nd 2 were on sand and ling. Drawing not to so	90 % Conform 1 3 and 4 were Ballin cale WATER water	ger Import. On 29	#Z SHOTI	d 4 observed	ie, Alan	ping E→
Distribu Distribu Distribu	ite Engineer	stribute Other 2 stribute Other 3 st results indicate the l conditions when the	density of the r	Tested B naterial at ucted.		ndolph, Tara	s, at the time

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

Report Number 3200a

Field Report

Report Number:

34664

A.A.R. Testing Laboratory, Inc. 7126 180th Ave.N.E. Park 180, Suite C101, Redmond, WA 98052 Phone 425.881 5812 Fax 425.881.5441

Client: Wyser Construction

Project Number:

03-100

17125 Sunset Road

Permit #:

NA

Bothell, WA 98012

Project Name:

Edmonds Unocal

Contact:

Address:

Pine Street

Date:

5/5/03

Time:

12:30:00 PM

Temperature:

50

Arrived onsite at 7:30 AM for scheduled compaction testing. Contractor notified me that testing was not suppose to be until the next day but he would have some other material to test in about 2 hours. I drove to lab and returned to job site at 10:00 AM. Waited onsite until 12:30 PM without taken any tests and then was dispatched to another job.

Distribution:	Distribute Client Distribute Contractor Distribute Engineer Distribute Owner Distribute Municipality Distribute Other Distribute Architect Distribute Other	Inspector: Reviewed by:	Flint, Sean FLI 90 4238 Kim Anderson
---------------	---	----------------------------	---

Report Number 3217

Park 180; Suite @101; Redmond, WA A.A.R. Testing Laboratory, Inc. 7126 180th

Client:

Wyser Construction

Project Number

03-100

Contact:

Address:

Project Name:

Edmonds Unocal

17125 Sunset Road

Address:

Pine Street

Bothell, WA 98012

Permit Number:

NA

Date:

Test#

5/12/03

Time:

10:30:00 AM

Test Device

Material Data

Material Description: Sand with minimal agg

Layer Thickness:

Unknown

Source:

Rinker

Compaction Method: Vibratory Roller

Nuclear Gauge: Troxler 3430 21240

Test Methods:

Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter

Standard Count : Standard Count

112.4

aboratory resemethodies

Modified Proctor ASTM D1557 Locations/Elevations

2236 Moisture Count: Density Count:

97%

1 Top of water main See sketch 2

Wet Density Moisture% Dry Density Lab Density %Compaction 112.4 96% 108.4 118.9 9.7 112.4 96% 117.5 8.6 108.2

108.8

Compaction Requirements:

✓ Conformance

Non Conformance

9.2

Remarks/Specifications Final Lift. Drawing not to scale.

118.8

Distribute Client

Distribute Other 1

Reviewed By:

Hale, Alan

Distribute Engineer

Distribute Other 2

Tested By:

Norgar, Jason NO

Distribute Municipality [__ Distribute Other 3

Distribute Architect

Distribute Contractor

Test results indicate the density of the material at the above indicated locations, at the time

and conditions when the test was conducted.

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. . Reproduction except in full, without the written consent or AAR Testing is strictly forbidden.

A.A.R Testing Laboratory Inc

Client:

Wyser Construction

Project Number

03-100

Contact:

Address:

Project Name:

Edmonds Unocal

17125 Sunset Road

Address:

Pine Street

Bothell, WA 98012

Permit Number:

NA

Date:

5/12/03

Time:

7:35:00 AM

Material Data

Material Description: Sand with minimal agg

Layer Thickness:

Source:

Unknown

Rinker

Compaction Method: Vibratory Roller

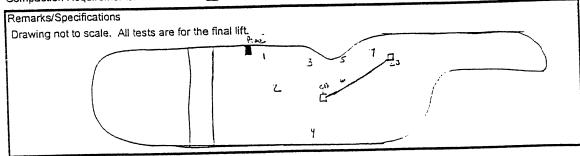
est Device

Nuclear Gauge:

Troxler 3430 21240

Test Methods:

Soil ASTM D2922, ASTM D3017


☑ DirectTransmission ☐ Back Scatter

aboratory lest Method

	Laboratory LestiMetrico			The Station		Contract of the second
	Modified Proctor ASTM D1557		Density Count:		Moisture Cour	Company of the control of the contro
Test #	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density 9	6Compaction
1	North half of pit #2604 Final grade See sketch	114.6	6.9	107.2	112.4	95%
2		115.4	\$ 8	106.9	112.4	95%
3		116.6	6 7.5	108.5	112.4	97%
4		11	6 . 8	107.4	112.4	96%
Ę	5 South half of pit 2604 top of CB See sketch	114.	5 6.8	107.2	112.4	95%

Compaction Requirements:

95" %

- Distribute Client
- Distribute Other 1
- Tested By:

Hale, Alan

Distribute Engineer

Distribute Other 2 Distribute Other 3 Reviewed By:

Norgar, Jason NO

Distribute Municipality: Distribute Contractor

Test results indicate the density of the material at the above indicated locations, at the time

and conditions when the test was conducted. Distribute Architect

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. .Reproduction except in full, without the written consent of AR Testing is strictly forbidden.

Report Number 3216

e N.E. Park 180 Suite C101 Redmond, WA A.A.R. Testing Laboratory, Inc.

Client:

Wyser Construction

Contact: Address:

17125 Sunset Road

Bothell, WA 98012

Date:

5/12/03

Project Number

03-100

Project Name:

Edmonds Unocal

Address:

Pine Street

Permit Number:

NA

Time:

7:35:00 AM

Material Data***

Material Description: Sand with minimal agg

Layer Thickness:

Unknown

Source:

Rinker

Compaction Method: Vibratory Roller

OF A STELEST Device

Troxler 3430 21240 Nuclear Gauge:

Test Methods:

Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter

4.9

Laboratory, Test Method

Modified Proctor ASTM D1557

Density Count

2236 Moisture Count:

Test # Locations/Elevations 6

Wet Density Moisture% Dry Density Lab Density %Compaction 115.6 7.2

111.7

107.8

106.5

Standard Country (1994)

112.4

112.4

95%

96%

95 % Conformance Non Conformance Compaction Requirements:

Remarks/Specifications Drawing not to scale. All tests are for the final lift.

Distribute Client

Distribute Other 1

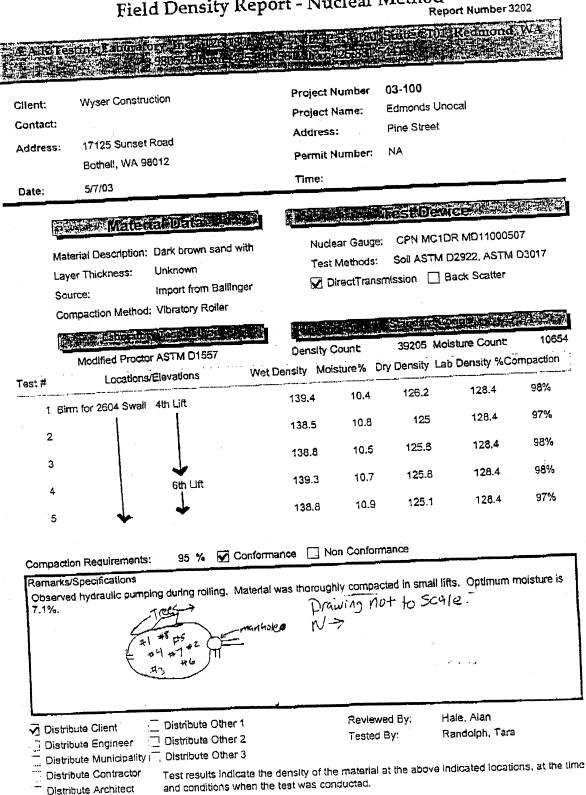
Reviewed By: Tested By:

Hale, Alan

Distribute Engineer

Distribute Other 2

Norgar, Jason NO


Distribute Contractor

Distribute Other 3 Distribute Municipality

Test results indicate the density of the material at the above indicated locations, at the time

and conditions when the test was conducted. Distribute Architect

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc., Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

All reports are considered confidential and are the property of the client and AAR Testing Esparatory Inc. Reproduction except in full, without the written consent of MAR Testing is strictly torbidden.

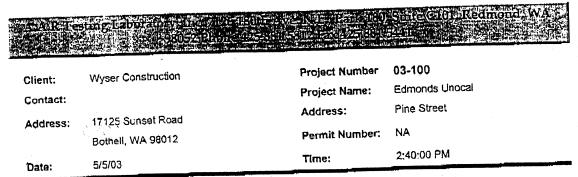
Report Number 3202 Esta 186 Shire C101 Redmond, V Project Number 03-100 Wyser Construction Client: Edmonds Unocal Project Name: Contact: Pine Street Address: 17125 Sunset Road Address: Permit Number: NA Bothell, WA 98012 Time: 5/7/03 Date: The street Devices the street West Maleta Date CPN MC1DR MD11000507 Nuclear Gauge: Material Description: Dark brown sand with Soil ASTM D2922, ASTM D3017 Test Methods: Layer Thickness: Unknown ☑ DirectTransmission ☐ Back Scatter Import from Ballinger Source: Compaction Method: Vibratory Roller Standard Science 2 10654 39205 Moisture Count: Density Count Modified Proctor ASTM D1557 Wet Density Moisture% Dry Density Lab Density %Compaction Locations/Elevations Test# 128.4 99% 10.3 126.5 139.5 8th Lift 6 Birm for 2604 Swall 98% 128.4 126 10.4 139.2 98% 126.3 128.4 10.8 140 Conformance Non Conformance Compaction Requirements: Remarks/Specifications Observed hydraulic pumping during rolling. Material was thoroughly compacted in small lifts. Optimum moisture is Drawing not to scale. Distribute Other 1 Reviewed By: Hale, Alan Distribute Client Randolph, Tara Tested By:

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. . Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

and conditions when the test was conducted.

Test results indicate the density of the material at the above Indicated locations, at the time

Distribute Other 2


Distribute Other 3

Distribute Engineer Distribute Municipality!

Distribute Contractor

Distribute Architect

Report Number 3212

Material Description: Dark Brown Pit Run M

Layer Thickness:

4 2nd Lift for the Swail Birm

Distribute Engineer

AAR Testing is strictly forbidden.

Unknown

Source:

Import from Ballinger

☐ Distribute Other 2

Distribute Municipality | Distribute Other 3

Compaction Method: Vibratory Roller

REPORT OF THE PROPERTY OF THE

Nuclear Gauge: Troxler 3430 019274

Soil ASTM 02922, ASTM D3017 Test Methods:

96%

96%

128.4

128.4

☑ DirectTransmission ☐ Back Scatter

123.9

122.9

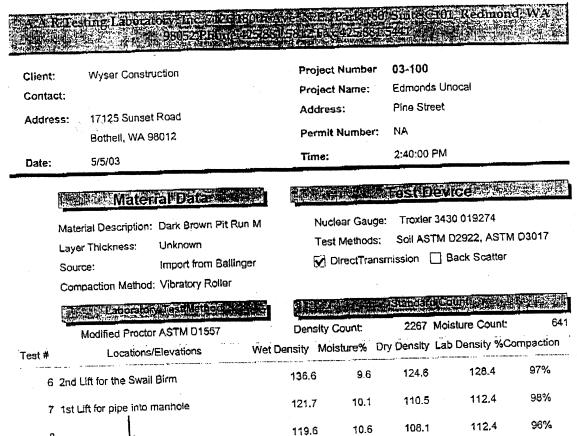
9.5

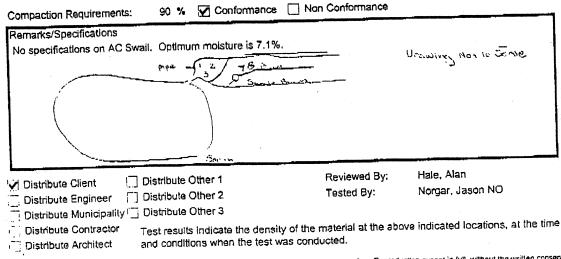
9.8

EN AND MER REPORTED TO THE RELIEF OF THE PARTY OF THE PAR					The second second	はなる。
1	Modified Proctor ASTM D1557		sity Count:		Moisture Count:	641 . · · ·
Test#	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density %C	ompaction
	1st Lift for the Swail Birm See Sketch	139.8	9.1	128.1	128.4	100%
. 2	ist Circles and	137.	6 9.8	125.3	128.4	98%
2		137.	5 9.5	123.9	128.4	96%
3						

Compaction Requirements: 90 % 🗹 Conformance	Non Conformatica	
Remarks/Specifications No specifications on AC Swail. Optimum moisture is 7.1%		Unawing nor to Ene
✓ Distribute Client ☐ Distribute Other 1	Reviewed By: Tested By:	Hale, Alan Norgar, Jason NO

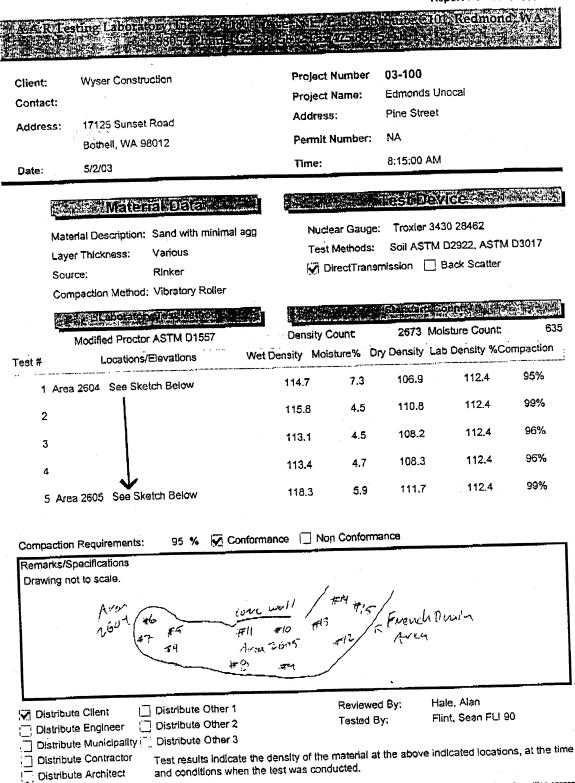
135.7

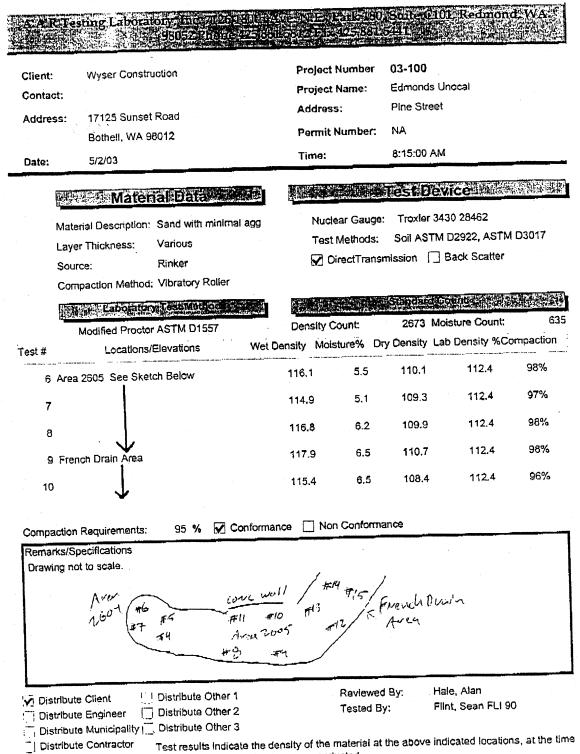

134.9


Test results indicate the density of the material at the above indicated locations, at the time Distribute Contractor and conditions when the test was conducted. Distribute Architect All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. .Reproduction except in (uf), without the written consent of

8

Field Density Report - Nuclear Method


Report Number 3212


Ail reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc., Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

Report Number 3139a

All records are considered confidential and are the property of the client and AAR Testing Laboratory Inc., Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

Report Number 3139a

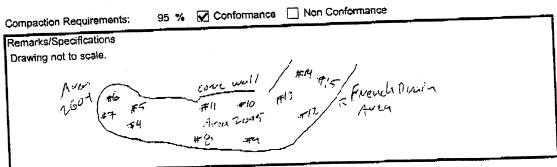
All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

and conditions when the test was conducted.

i Distribute Architect

97%

112.4

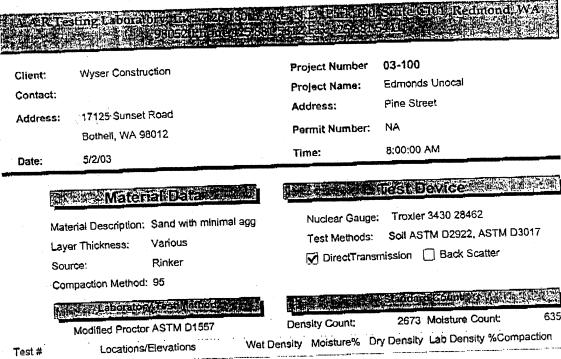

108.6

7.1

12

Field Density Report - Nuclear Method

Report Number 3139a HEXFIOLENCE MOND WA Project Number 03-100 Wyser Construction Client: Edmonds Unocal Project Name: Contact: Pine Street Address: 17125 Sunset Road Address: Permit Number: NA Bothell, WA 98012 8:15:00 AM Time: 5/2/03 Date: Materia Data Nuclear Gauge: Troxler 3430 28462 Material Description: Sand with minimal agg Soil ASTM D2922, ASTM D3017 Test Methods: Various Layer Thickness: ☑ DirectTransmission ☐ Back Scatter Rinker Source: Compaction Method: Vibratory Roller 635 2673 Moisture Count: Density Count: Modified Proctor ASTM D1557 Wet Density Moisture% Dry Density Lab Density %Compaction Locations/Elevations Test# 95% 112.4 106.6 6.8 113.9 11



116.3

A Distribute Client Distribute Other 1	Containing Dist	
	Reviewed By:	Hale, Alan
	Tested By:	Flint, Sean FLI 90
Distribute Engineer Distribute Other 2		
Distribute Municipality Distribute Other 3 Distribute Contractor Test results indicate the density of the results indicate the results indicate the density of the results indicate the results in results in the results in results in results in results in results in resu		

idential and are the property of the client and AAR Testing Laboratory Inc. Reproduction except in full, without the written consent of All reports are considering would NAR Teating is strictly inrbidden.

Report Number 3138a

	Modified Proctor ASTM D1557		Density Count: 2673		Moisture Count:	635
Test#	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density %C	ompaction
	Pit 263 See Sketch Below	117.3	7.4	109.2	112.4	97%
1	Fit 200 200 Challenge	116.1	7.4	108.1	112.4	96%
. 4		117.8	3 7.1	110	112.4	98%
3	١,					

Compaction Requirements: Remarks/Specifications All Tests taken at top of sub-grade. Drawing not to scale. Hale, Alan Reviewed By: Distribute Other 1 Distribute Client Flint, Sean FLI 90 Tested By: Distribute Other 2

:_	Ī	Dis	tribt	Jte	En	gir	ee	!r
	_							_

Distribute Contractor

Distribute Municipality Distribute Other 3

Test results indicate the density of the material at the above indicated locations, at the time

Distribute Architect

and conditions when the test was conducted.

All reports are considered confidential and are the property of the citent and AAR Testing Laboratory Inc., Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

Report Number 3137a

A-A R Testing Laboratory Inc 7126 180th Ave. N.E. Park 180; Soite C101; Redmond, WA

Client:

Wyser Construction

Project Number

03-100

Contact:

Project Name:

Edmonds Unocal

Address:

17125 Sunset Road

Address:

Pine Street

Bothell, WA 98012

Permit Number:

NA

Date:

Test#

2

4/28/03

Time:

2:30:00 AM

Material Data

Material Description: Sand with minimal agg

Layer Thickness:

Source:

Varies

Rinker

Compaction Method: Vibratory Roller

LE LE Test Device

Nuclear Gauge: Troxler 3430 28462

Test Methods:

Soil ASTM D2922, ASTM D3017

112.4

112.4

99%

98%

✓ DirectTransmission ☐ Back Scatter

Locations/Elevations

dais (o) et all la Et al (Et al (a) et a	
Modified Proctor ASTM D1557	

Den	sity Count:	2667	Moisture Count:	644
ensity	Moisture%	Dry Density	Lab Density %Co	mpaction
119.6	9.6	108.6	112.4	97%
119	8.7	109.5	112.4	97%
117.9	8.3	108.9	112.4	97%

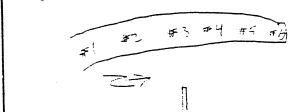
111

109.7

3 5

1 See Sketch Below

 ▼ Conformance Non Conformance Compaction Requirements: 95 %


Remarks/Specifications

Drawing not to scale. All tests were taken at the top of sub grade over the drainage spine.

Wet D

121

120.5

Distribute Client

Distribute Other 1

Reviewed By:

Hale, Alan

Distribute Engineer

Distribute Other 2

Tested By:

9.9

Flint, Sean FLI 90

Distribute Engineer _____ Distribute Contractor

Distribute Other 3

Test results indicate the density of the material at the above indicated locations, at the time and conditions when the test was conducted.

Distribute Architect

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. .Reproduction except in full, without the written consent of HAR Testing is strictly forbidden.

Report Number 3137a

A.A.R.Testing Laboratory; Inc. 7126:180th Ave. N.E. Park 180; Strife C101; Redmond, WA

Client:

Wyser Construction

Contact: Address:

17125 Sunset Road

Bothell, WA 98012

Date:

4/28/03

Project Number

03-100

Project Name:

Edmonds Unocal

Address:

Pine Street

Permit Number:

NA

Time:

2:30:00 AM

Material Data

Material Description: Sand with minimal agg

Layer Thickness:

Varies

Source:

Rinker

Compaction Method: Vibratory Roller

Lest Device

Nuclear Gauge:

Troxler 3430 28462

Test Methods:

Soil ASTM D2922, ASTM D3017

☑ DirectTransmission ☐ Back Scatter

10

TE BEARDIAN NESCHARTIONS

Modified Proctor ASTM D1557

Density Count:

2667 Moisture Count:

Test#

Locations/Elevations

Wet Density Moisture% Dry Density Lab Density %Compaction

Standard Count 🚅 🔭 💮

6 See Sketch Below

119.8

108.9

112.4

95 % Compaction Requirements:

Remarks/Specifications Drawing not to scale. All tests were taken at the top of sub grade over the drainage spine.

Distribute Client

Distribute Other 1

Reviewed By:

Hale, Alan

Distribute Engineer

Distribute Other 2

Tested By:

Flint, Sean FLI 90

Distribute Municipality

Distribute Other 3

Distribute Contractor

Test results indicate the density of the material at the above indicated locations, at the time

Distribute Architect and conditions when the test was conducted.

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc., Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

Report Number 3198

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. . Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

Report Number 3198

Client:

Wyser Construction

Contact: Address:

17125 Sunset Road

Project Name: Address:

Edmonds Unocal

Bothell, WA 98012

Permit Number:

Pine Street

Date:

4/25/03

Time:

Material Description: Sand with minimal agg

Layer Thickness:

Source:

Unknown

Rinker

Compaction Method: Vibratory Roller

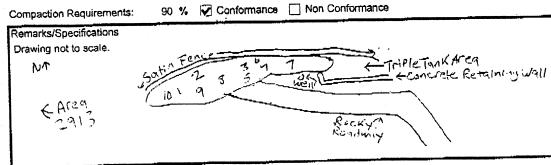
Test Device 1

NA

Nuclear Gauge: CPN MC1DR MD11000507

PART SALES OF THE SALES OF THE

Test Methods:


Soil ASTM D2922, ASTM D3017

☑ DirectTransmission ☐ Back Scatter ☐

AA WE - I THANKS A STM D1667

			The state of the state of	. bet er bettertem tibli bereit.	STREET, STREET	A THE RESERVE OF THE PARTY OF T
÷	Modified Proctor ASTM D1557		sity Count	39203	Moisture Count:	10656
Test #	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density %C	Compaction
5	SE half of French Drain 80' from Well	119.8	11.7	107.2	112.4	95%
6		117.7	11.54	105.6	112.4	94%
7	Triple Tank Area See Sketch	118.8	3 11.2	106.8	112.4	95%
	NE half of French Orain Area	120.3	3 10.8	108.6	112.4	97%
9	NE half parreil to French Drain 12th Lift	120.	4 10.6	108.9	112.4	97%

Compaction Requirements:

V	Distribute	Client

Distribute Other 1

Reviewed By:

Hale, Alan

Distribute Engineer

Distribute Other 2 Distribute Municipality | Distribute Other 3 Tested By:

Randolph, Tara

Distribute Contractor

Distribute Architect

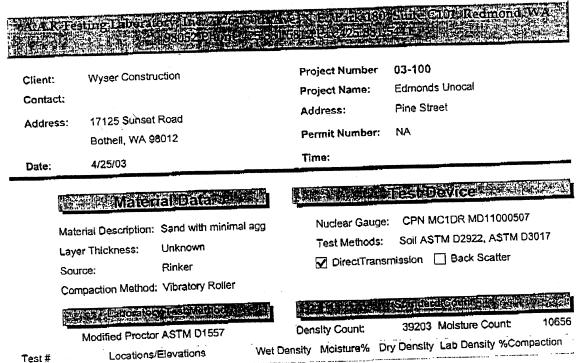
Test results indicate the density of the material at the above indicated locations, at the time and conditions when the test was conducted.

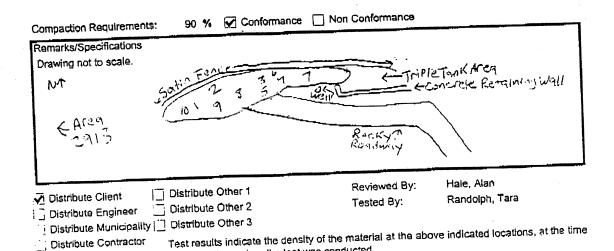
All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. Reproduction except in full, without the written consent of AAR Testing is strictly tarbidden.

10 NE half parrell to French Drain 12 Lift

Distribute Contractor

Field Density Report - Nuclear Method

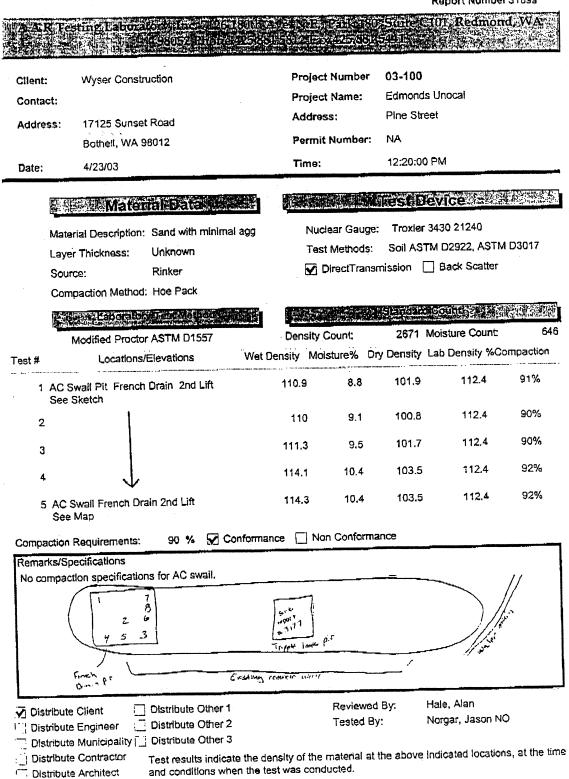

Report Number 3198


96%

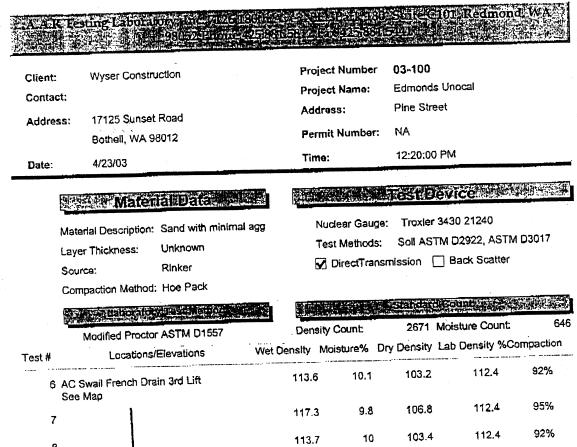
112.4

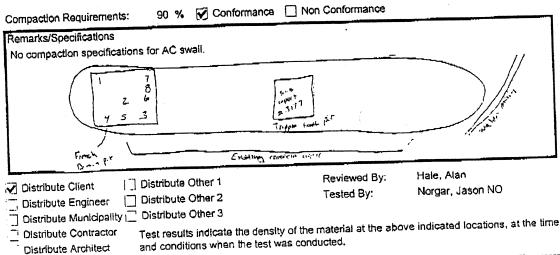
107.5

11.3

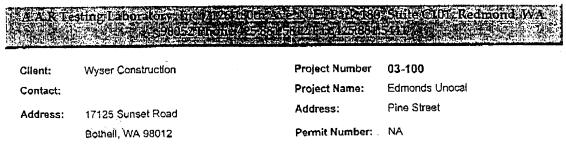


119.6


and conditions when the test was conducted. Distribute Architect All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. .Reproduction except in full, without the written consent of AAR Tristing is strictly forbidden.


Report Number 3189a

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. . Reproduction except in full, without the written consent of AAR Training is suretly forbidden.


Report Number 3189a

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc., Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

Report Number 3177a

Time:

Mare a Marerial Date Co.

Material Description: Sand with minimal

Layer Thickness:

4/23/03

Unknown

Source:

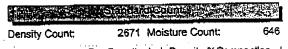
Date:

Rinker

Compaction Method: Hoe Pack

HE THE REPORT OF THE PROPERTY OF THE PARTY O

Nuclear Gauga: Troxler 3430 28462


Test Methods: Soil ASTM D2922, ASTM D3017

8:30:00 AM

✓ DirectTransmission ☐ Back Scatter

A CONTRACTOR OF THE PROPERTY O

	Modified Proctor ASTM D1557		
Tact#	Locations/Flevations	We	

Fest#	Locations/Elevations	Wet Density M	loisture%	Dry Density	Lab Density %	Compaction
1	AC Swail Pit Triple Tank Farm 1st Lift	120.5	17.8	102.3	112.4	91%
2		122.7	14.6	107.1	112.4	95%
3		122.3	16.9	104.6	112.4	93%
4		118.2	14.4	103.3	112.4	92%
5	AC Swall Pit French Drain 1st Lift	115.1	12.3	102.5	112.4	91%

Compaction Requirements: 90 % Conformance Non Conformance

Remarks/Specifications

No specification for compaction on AC Swail. Drawing not to scale.

State of the state of t

W.	Distribute	Client
	Charles de	Enginee

Distribute Other 1

Reviewed By:

Hale, Alan

Distribute Engineer

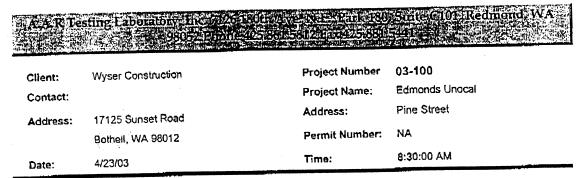
Distribute Other 2

Tested By:

Norgar, Jason NO

Distribute Contractor

Distribute Municipality __ Distribute Other 3


Test results indicate the density of the material at the above indicated locations, at the time

Distribute Architect

and conditions when the test was conducted.

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. .Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

Report Number 3177a

Waterial Datawall Ruse

Material Description: Sand with minimal

Layer Thickness: Unknown

Source:

Rinker

Compaction Method: Hoe Pack

Fest Device 13 4

Nuclear Gauge: Troxler 3430 28462

Soil ASTM D2922, ASTM 03017 Test Methods:

☑ DirectTransmission ☐ Back Scatter

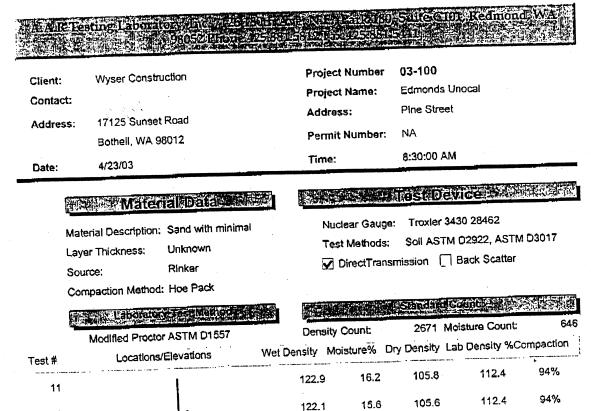
	Water Dancearen New Letter			This of the last the second	Acquire the	
u	Modified Proctor ASTM D1557	tor ASTM D1557 Dens		ensity Count: 2671		646
Test #	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density %Co	ompaction
6 A	Ac Swail Plt French Drain 1st Lift	119.6	12.9	105.9	112.4	94%
7		117.9) 13	104.3	112.4	93%
8		120) 14.1	105.2	112.4	94%
	AC Swail Triple Tank Farm 2nd Lift	121.6	5 15.2	105.8	112.4	94%
10		120.	7 16.1	103.9	112.4	92%

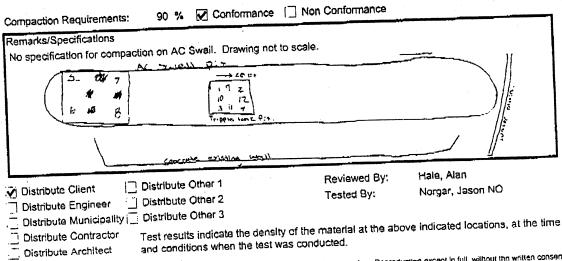
Compaction Requirements:	90 % 🔀 Conformance	Non Conformance	
Remarks/Specifications No specification for compaction 5- 117 7	on on AC Swail. Drawing not to	scale.	The state of the s
☑ Distribute Client □ □	Distribute Other 1	Reviewed By:	Hale, Alan Norgar, Jason NO

Distribute	
Distribute	Engineer

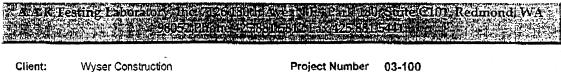
Distribute Other 2

Distribute Municipality [] Distribute Other 3


Distribute Contractor Distribute Architect


Test results indicate the density of the material at the above indicated locations, at the time and conditions when the test was conducted.

12


Field Density Report - Nuclear Method

Report Number 3177a

Report Number 3136a

Contact: Address:

17125 Sunset Road

Project Name:

Edmonds Unocal

Bothell, WA 98012

Permit Number:

Pine Street

Date:

Test #

2

Distribute Architect

4/22/03

Time:

Address:

11:00:00 AM

STANSEMENT OF THE PROPERTY OF

Material Description: Sand with minimal agg

Layer Thickness:

Unknown

Source:

Import from Ballinger

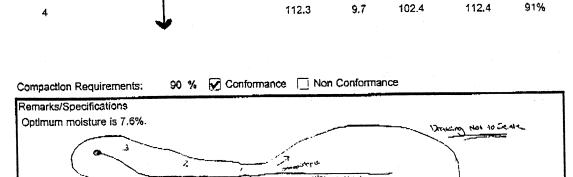
Compaction Method: Vibratory Roller

WIND TEST Device WANTED

Nuclear Gauge: Troxler 3430 28462

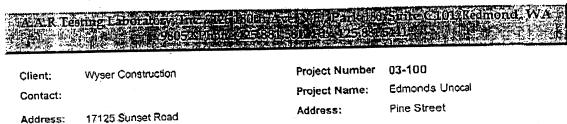
NA

Soil ASTM D2922, ASTM D3017 Test Methods:


✓ DirectTransmission ☐ Back Scatter

Modified Proctor ASTM D1557	

Locations/Elevations


1 Upper Water Line 1st Lift 1 1/2' over pipe

	Den:	sity Count:	2653	Moisture Count	646
W	et Density	Moisture%	Dry Density	Lab Density %Co	ompaction
e	114.2	10	103.8	112.4	92%
	113.9	9.5	104	112.4	93%
	111.1	8.5	102.4	112.4	91%

waxer main buck Sid over New waver lines. Hale, Alan Reviewed By: Distribute Other 1 Distribute Client Norgar, Jason NO Distribute Other 2 Tested By: Distribute Engineer Distribute Municipality Ti Distribute Other 3 Test results indicate the density of the material at the above indicated locations, at the time Distribute Contractor and conditions when the test was conducted.

Report Number 3120a

Date:

4/22/03

Bothell, WA 98012

Time:

Permit Number:

9:00:00 AM

Material Description: Sand with minimal agg

Layer Thickness:

Unknown

Source:

Rinker

Compaction Method: Vibratory Roller

A STREET DEVICE AS A STREET

Nuclear Gauge: Troxler 3430 28462

NA

Soil ASTM 02922, ASTM 03017 Test Methods:

☑ DirectTransmission ☐ Back Scatter

The same	
Modified	Proctor ASTM D1557

•	364	一大大学の大学の大学の大学	Mary State of the same	And the same	
-		sity Count:	0	0	
et C	Density	Moisture%	Dry Density	Lab Density %C	compaction
	113.5	10.1	103.1	112.4	92%
	111.9	9.6	102.1	112.4	91%
	113.2	2 10.1	102.8	112.4	91%
	113.	5 9.4	103.7	112.4	92%

Test#	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Delisty 7000	
	Lift over Water Main Line	113.5	5 10.1	103.1	112.4	92%
2		111.5	9.6	102.1	112.4	91%
3		113.	2 10.1	102.8	112.4	91%
		113.	5 9.4	103.7	112.4	92%
4		112.	7 9.3	3 103.1	112.4	92%
5						

Conformance [Non Conformance Compaction Requirements: Remarks/Specifications Drawing not to scale.

1				
	Distribute Client Distribute Other 1 Distribute Engineer Distribute Other 2	Reviewed By: Tested By:	Hale, Alan Norgar, Jason NO	
	Distribute Municipality Distribute Other 3	. I - Libe abo	re indicated locations, at the	e timé
:		he density of the material at the abo the test was conducted.	AG MIGISATOR 1993	
	Distribute Architect and conditions when t	tariles Berndu	tion except in full without the written	i conse

Report Number 3187a

Client:

Wyser Construction

Project Number

03-100

Contact: Address:

17125 Sunset Road

Project Name:

Edmonds Unocal

Bothell, WA 98012

Permit Number:

Pine Street

NA

Date:

4/21/03

Time:

Address:

11:00:00 AM

Material Description: Sand with minimal agg

Layer Thickness:

Unknown

Source:

Rinker

Compaction Method: 90

TEST DEVICE TO THE

Nuclear Gauge:

Troxler 3430 28462

Test Methods:

Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter

	Modified Proctor ASTM D1557	Den	sity Count	2668	Moisture Count	: 649
Test #	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density %	Compaction
1 V	Vater Main Line 2nd Lift	117.7	9.8	107.2	112.4	95%
2		115.8	11.5	103.9	112.4	92%
3		116.9	10.2	105.3	112.4	94%
4		116.5	9.9	106	112.4	94%

Compaction Requirements:	90 %	Conformance Non Conformance
Remarks/Specifications		
Optimum Moisture is 7.6%.		
Disassing HOL & Sente	<u>-</u> '	The state of the s

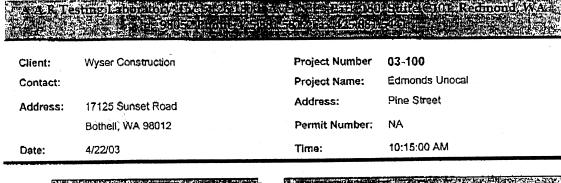
- Distribute Client
- Distribute Other 1
- Reviewed By:

Hale, Alan

☐ Distribute Engineer

- Distribute Other 2
- Tested By:

Norgar, Jason NO


! ☐ Distribute Municipality ☐ Distribute Other 3 Distribute Contractor

Test results indicate the density of the material at the above indicated locations, at the time

Distribute Architect

and conditions when the test was conducted.

Report Number 3123a

Waterial Established

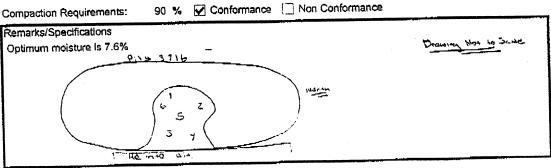
Material Description: Sand with minimal agg

Unknown Layer Thickness: Rinker Source:

Compaction Method: Vibratory Roller

A BOY HOLD THE STREET BOY ICE AND THE STREET

Troxler 3430 28462 Nuclear Gauge:


Soil ASTM D2922, ASTM D3017 Test Methods:

✓ DirectTransmission ☐ Back Scatter

103.5

Density Count 2653 Moisture Count: Modified Proctor ASTM D1557 Wet Density Molsture% Dry Density Lab Density %Compaction Locations/Elevations Test# 92% 102.9 112.4 1 1st Lift for Pit #3716 Middle section Only 8.9 112.1 See Map 112.4 92% 9.5 103.8 113.7 2 93% 104.2 112.4 113.9 9.3 3 91% 102.5 112.4 10 112.7 4 2nd Lift Pit #3716 92%

114.2

Distribute Client

5

Distribute Other 1

Reviewed By:

Hale, Alan

Distribute Engineer Distribute Municipality | Distribute Other 3

Distribute Other 2

Tested By:

10.3

Norgar, Jason NO

112.4

Distribute Contractor

Test results indicate the density of the material at the above indicated locations, at the time

and conditions when the test was conducted. Distribute Architect

Report Number 3123a

Client:

Wyser Construction

Contact:

Address:

17125 Sunset Road

Bothell, WA 98012

Date:

4/22/03

Project Number

03-100

Project Name:

Edmonds Unocal

Address:

Pine Street

Permit Number:

Time:

10:15:00 AM

Material Data Walking

Material Description: Sand with minimal agg

Layer Thickness:

Unknown

Source:

Rinker

Compaction Method: Vibratory Roller

A STORY CONTROL OF THE STATE OF

Troxler 3430 28462 Nuclear Gauge:

NA

Soil ASTM D2922, ASTM D3017 Test Methods:

☑ DirectTransmission ☐ Back Scatter

Modified Proctor ASTM D1557

Density Count:

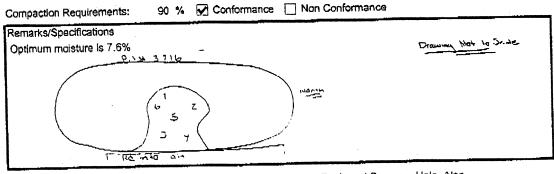
2653 Moisture Count

Test#

Locations/Elevations

Wet Density Moisture% Dry Density Lab Density %Compaction

6 2nd Lift Pit #3716


115

10.7

103.9

112.4

92%

Distribute Client

Distribute Other 1

Reviewed By:

Hale, Alan

Distribute Engineer Distribute Municipality [] Distribute Other 3

Distribute Other 2

Tested By:

Norgar, Jason NO

Distribute Contractor

Test results indicate the density of the material at the above indicated locations, at the time

and conditions when the test was conducted. Distribute Architect

Report Number 3186a

A.A.R Testing Laboratory, Inc. 7126 180th Ave Park 180 Suite C101; Redmond, WA 98052 Phone 425.881

Client:

Wyser Construction

Contact: Address:

17125 Sunset Road

Bothell, WA 98012

Date:

4/21/03

Project Number

03-100

Project Name:

Edmonds Unocal

Address:

Pine Street

Permit Number:

NA

Time:

8:30:00 AM

Material Data ***

Material Description: Sand with minimal agg

Layer Thickness:

Unknown

Source:

Rinker

Compaction Method: Vibratory Roller

lest Device

Nuclear Gauge:

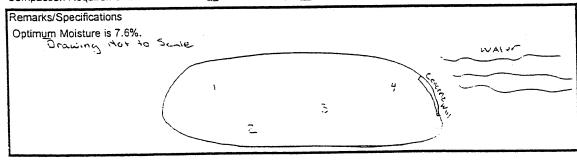
Troxler 3430 28462

Standard Count

Test Methods:

Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter


್ಯಾಸ್ಟ್ರಕ್ಕ Laboratory Test Methodby ಕ

649 **Density Count:** 2668 Moisture Count: Modified Proctor ASTM D1557 Wet Density Moisture% Dry Density Lab Density %Compaction Locations/Elevations Test# 95% 106.4 112.4 1 Pit #2909 East Half 3rd Lift 117.8 10.5 95% 106.8 112.4 117.2 9.8 2 95% 116.8 9.7 106.5 112.4 112.4 96% 119.3 10.6 107.9

Compaction Requirements:

Conformance

Non Conformance

✓ Distribute Client

Distribute Other 1

Reviewed By:

Hale, Alan

Distribute Engineer Distribute Municipality

Distribute Other 2 Distribute Other 3 Tested By:

Norgar, Jason NO

Distribute Contractor

Test results indicate the density of the material at the above indicated locations, at the time

and conditions when the test was conducted. Distribute Architect

Report Number 3188a

A.A.R. Testing Laboratory, Inc. //126, 180th Ave. N.E. Park 180, Suite C101, Redmond, WA

Client:

Wyser Construction

Project Number

03-100

NA

Contact:

Project Name: Address:

Edmonds Unocal

Address:

17125 Sunset Road

Bothell, WA 98012

Permit Number:

Nuclear Gauge:

Pine Street

Date:

4/21/03

Time:

Material Data

Material Description: Sand with minimal agg

Layer Thickness:

Unknown

Source:

Rinker

Test Methods:

Troxler 3430 28462

HEAT DEVICES.

Soil ASTM D2922, ASTM D3017

Compaction Method: Vibratory Roller

☑ DirectTransmission ☐ Back Scatter

Modified Proctor ASTM D1557

ity Count:	2668	Moisture Count:	649
Moisture%	Dry Density	Lab Density %Comp	action
		,	ity Count: 2668 Moisture Count: Moisture% Dry Density Lab Density %Comp

lest#	Locati	ons/Elevations	wet Density	Moisture%	Dry Density	Cab Density	76COMpaction
1	U38 Excavation Basin, 8th Lift	for the Storm Catch	120.2	13.1	106.3	112.4	95%
2			120.3	12.8	106.6	112.4	95%
3		·	119.3	10.6	107.9	112.4	96%

Compaction Requirements:

▼ Conformance Non Conformance

Remarks/Specifications	
Optimum moisture is 7.6%.	
2 3	Drawing Moi to Scale.

- ✓ Distribute Client
- Distribute Other 1
- Reviewed By:

Hale, Alan

Distribute Engineer Distribute Engineer

Distribute Municipality

- Distribute Other 2
- Tested By:

Norgar, Jason NO

Distribute Contractor Distribute Architect

Distribute Other 3

Test results indicate the density of the material at the above indicated locations, at the time and conditions when the test was conducted.

Report Number 3195

A.A.R. Lesting Laboratory, Inc. 7/126 180th Ave. N.E., Park 180, Suite C101, Redmond, WA 98052 Phone 425.881 5812 Fax 425.881 5441

Client:

Wyser Construction-

Project Number

03-100

Contact:

Address:

Project Name:

Edmonds Unocal

17125 Sunset Road

Address:

Pine Street

Bothell, WA 98012

Permit Number:

Date:

4/18/03

Time:

12:00:00 PM

Material Data 😅 😅

Material Description: Sand with minimal agg

Layer Thickness:

Unknown

Source:

Rinker

Compaction Method: Vibratory Roller

Test Device

Standard Count

Nuclear Gauge:

Troxler 3430 21240

Test Methods:

Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter

Service Test Method

f	Laudialdi, iesemenios			A STATE OF THE PARTY OF THE PAR		Merchanism and Commence of the
Modified Proctor ASTM D1557		Density Count:		2284	Moisture Cour	nt: 584
Test#	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density 9	%Compaction
1 P	Pit 2909 East half 1st Lift	117.1	12	104.5	112.4	93%
2		117.7	11.5	105.6	112.4	94%
3		120.	1 12.9	106.3	112.4	95%
4 F	Pit 2909 East half 2nd Lift	120.	3 12.8	106.6	112.4	95%
5	1 1 1	119.	8 11.8	107.2	112.4	95%

Compaction Requirements:

✓ Conformance

Non Conformance

Remarks/Specifications	5
2nd Lift requires 95% (•

ires 95% compaction, which was achieved.

✓ Distribute Client

Distribute Other 1

Reviewed By:

Hale, Alan

Distribute Engineer

Distribute Other 2

Tested By:

Randolph, Tara

Distribute Municipality

Distribute Other 3

Distribute Contractor Distribute Architect

Test results indicate the density of the material at the above indicated locations, at the time and conditions when the test was conducted.

Field Density Report - Nuclear Method Report Number 3195

A.A.R	Testing Laboratory, Inc. 7126 180th A	Ye. N.E., Park 180 1 5812 Fax 425 881	Suite C101: Redmond, WA 5441
Client:	Wyser Construction	Project Number	03-100
Contact	:	Project Name:	Edmonds Unocal
Address	s: 17125 Sunset Road	Address:	Pine Street
	Bothell, WA 98012	Permit Number:	NA
Date:	4/18/03	Time:	12:00:00 PM
L	Material Data Material Data Material Description: Sand with minimal agg Layer Thickness: Unknown Source: Rinker Compaction Method: Vibratory Roller	Nuclear Gauge: Test Methods: ✓ DirectTransi	Soil ASTM D2922, ASTM D3017
	Caboratory Test Method		Standard Count
	Modified Proctor ASTM D1557	Density Count:	2284 Moisture Count: 584
Test#	Locations/Elevations Wet D	Density Moisture% Dr	y Density Lab Density %Compaction
6	i sk sk	120 12.3	106.8 112.4 95%

Compaction Requirements:	95 %	✓ Conformance	Non Conformance		
Remarks/Specifications					
2nd Lift requires 95% compact	tion, whic	h was achieved.			
·					
,		•			
✓: Distribute Client Di	stribute C	Other 1	Reviewed By:	Hale, Alan	
	stribute C	Other 2	Tested By:	Randolph, Tara	
Distribute Municipality Di	stribute C	Other 3			
		indicate the density	y of the material at the aboas conducted.	ove indicated locations	at the time

Field Density Report - Nuclear Method Report Number 3194

A.A.R Testing Laboratory, Inc. 7126 180th Ave. N.E., Park 180; Suite C101; Redmond, W.A.

110	nt:

Wyser Construction -

Project Number

03-100

Contact:

Project Name:

Edmonds Unocal

Address:

17125 Sunset Road

Address:

Pine Street

Bothell, WA 98012

Permit Number:

NA

Date:

4/18/03

Time:

12:00:00 PM

Material Data

Material Description: Sand with minimal agg

Layer Thickness:

Unknown

Source:

Rinker

Compaction Method: Hoe Pack

Y ... Test Device

Standard Count

Troxler 3430 21240 Nuclear Gauge:

Test Methods:

Soil ASTM D2922, ASTM D3017

☑ DirectTransmission ☐ Back Scatter

Labora Labora	tory Test Method
	. ACTN D4557

	Laporatory 1 est Wethous 182		C description of the			Mail hatter was and Brieft resident	
	Modified Proctor ASTM D1557	Den	sity Count:	2284	2284 Moisture Count:		
Test#	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density %	Compaction	
1	Water Main Line	114.5	5 11	103.2	112.4	92%	
2		120.2	2 13.1	106.2	112.4	94%	
3		120.4	4 12.8	106.7	112.4	95%	

Compaction Requirements:	90 %	Conformance	14011 Comormance	
Remarks/Specifications				
Optimum moisture is 7.6%.				
				II-la Maa

J	Distribute Client	Distribute Other 1	Reviewed By:	Hale, Alan	
	Distribute Engineer	Distribute Other 2	Tested By:	Randolph, Tara	
=	Distribute Municipality	Distribute Other 3			
_	Distribute Contractor	Test results indicate the de	ensity of the material at the abov	ve indicated locations, at the tir	n
	Distribute Architect	and conditions when the te	est was conducted.		

Report Number 3192

A.A.R. Testing Laboratory, Inc. 7126 180th: Ave. N.E., Park 180, Suite C101, Redmond, W.

Client:

Wyser Construction

Project Number

03-100

Contact:

Project Name:

Edmonds Unocal

Address:

17125 Sunset Road

Address:

Pine Street

Bothell, WA 98012

Permit Number:

NA

Date:

4/18/03

Time:

12:00:00 PM

Test Device ***

Material Data - Material Data

Material Description: Sand with minimal agg

Layer Thickness:

Source:

Unknown

Rinker

Test Methods: ✓ DirectTransmission ☐ Back Scatter

Nuclear Gauge:

Soil ASTM D2922, ASTM D3017

Troxler 3430 21240

Compaction Method: Hoe Pack

	Laboratory Test Me	F Standard Count					
	Modified Proctor ASTM D1557		Density Count:		2284	2284 Moisture Count:	
Test #	Locations/Elevation	s	Wet Density	Moisture%	Dry Density	Lab Density 9	%Compaction
1	Receiving Storm Catch Basin	1st Lift	114.4	10.9	103.2	112.4	92%
2			115.2	2 11.1	103.6	112.4	92%
3		2nd Lift	115.9	9 10.8	104.6	112.4	93%
4			115.	2 12.2	102.7	112.4	91%
5		3rd Lift	113.	4 11	102.2	112.4	91%

Compaction Requirements:

Remarks/Specifications Optimum moisture is 7.	6%.		
	•		

Distribute Other 1

90 %

Reviewed By:

Hale, Alan

Distribute Engineer

Distribute Other 2

Tested By:

Non Conformance

Randolph, Tara

Distribute Municipality Distribute Contractor

Distribute Other 3

Test results indicate the density of the material at the above indicated locations, at the time

✓ Conformance

Distribute Architect and conditions when the test was conducted.

Report Number 3192

ark 180; Suite C101, Redmond, W. A.A.R. Testing Laboratory, Inc. 7126 180th Ave. N.E.

Client:

Wyser Construction-

Project Number

03-100

Contact:

Address:

17125 Sunset Road

Project Name:

Edmonds Unocal

Address:

Pine Street

Bothell, WA 98012

Permit Number:

NA

Date:

4/18/03

Time:

12:00:00 PM

Material Data 1000

Material Description: Sand with minimal agg

Layer Thickness:

Unknown

Source:

Rinker

Compaction Method: Hoe Pack

Test Device

Nuclear Gauge:

Troxler 3430 21240

Test Methods:

Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter

Standard Count

Laboratory Lest Method

	Modified Proctor ASTM D1557	Den	sity Count:	2284	Moisture Cou	nt: 584	
Test#	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density	%Compaction	
6	ŕ	112.8	3 11.8	100.9	112.4	90%	
7	4th I	_ift 114.:	3 11.5	102.5	112.4	91%	
8		113.9	9 11.3	102.3	112.4	91%	
.9	5th	/ Lift 116.:	2 11.4	104.5	112.4	93%	
10	\downarrow \downarrow	116.	5 10.9	105	112.4	93%	

Compaction Requirements:

Remarks/Specifications Optimum moisture is 7.6%.

✓ Distribute Client	Distribute Other 1	Reviewed By:	Hale, Alan	
4				

Y	Distribute	Client
	Distribute	Engin

Distribute Municipality

Distribute Contractor

Distribute Other 3

Test results indicate the density of the material at the above indicated locations, at the time

and conditions when the test was conducted. Distribute Architect

Report Number 3192

A.A.R. Testing Laboratory, Inc. 7126-180th Ave. N.E. Park 180, Suite C101, Redmond, WA

Client:

Wyser Construction

17125 Sunset Road

Project Number

03-100

Contact: Address:

Project Name:

Edmonds Unocal

Address:

Pine Street

Bothell, WA 98012

Permit Number:

NA

Date:

4/18/03

Time:

12:00:00 PM

Material Data

Material Description: Sand with minimal agg

Layer Thickness:

Unknown

Source:

Compaction Requirements:

Rinker

Nuclear Gauge: Test Methods:

Troxler 3430 21240

Examplest Device Seales of

Soil ASTM D2922, ASTM D3017

Sandara Count

✓ DirectTransmission ☐ Back Scatter

Compaction Method: Hoe Pack

aboratory Test Method

	Modified Proctor ASTM D1557							
			Density Count: 22		2284	Moisture Cour	nt: 584	
Test#	Locations/Eleva	ations	Wet Density	Moisture%	Dry Density	Lab Density %	Compaction	
11	[6th Lift	115.7	10.7	104.5	112.4	93%	
12			114.9	11.2	103.3	112.4	92%	
13		7th Lift	116.6	11.1	104.9	112.4	93%	
14		1	116.5	12.3	103.7	112.4	92%	

Remarks/Specifications		
Optimum moisture is 7.6%.		
\$		

✓ Distrib	ute Client	Distribute	Other 1	Reviewed By:	Hale, Alan
_ Distrib	ute Engineer	Distribute	Other 2	Tested By:	Randolph, Tara
_ Distrib	ute Municipality	Distribute	Other 3		
_ Distrib	oute Contractor	Test result	s indicate the density of	of the material at the above	e indicated locations, at the time
Distrib	oute Architect	and conditi	ons when the test was	conducted.	

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. . Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

Report Number 3027

A.A.R. Testing Laboratory, Inc. 7126 180th Ave. N.E., Park 180, Suite C101, Redmond, WA 98052 Phone 425.881.5812 Fax

Client:

Wyser Construction

Project Number

03-100

Contact:

Project Name:

Edmonds Unical

Address:

17125 Sunset Road

Address:

Pine Street

Bothell, WA 98012

Permit Number:

NA

Date:

2/21/03

Time:

12:30:00.PM

Material Data

Material Description: Fine Silty Sand w/Agg.

Layer Thickness:

Source:

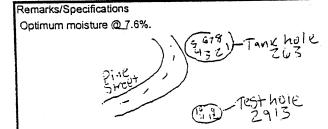
Compaction Method: Roller

-----Test Device

Nuclear Gauge:

Troxler 3430 21240

Test Methods:


Soil ASTM D2922, ASTM D3017

✓ DirectTransmission

Back Scatter

	Laboratory: Lest Methods #			Standar	d:Count	
	Modified Proctor ASTM D1557	Density Count		2266	Moisture Count:	644
Test#	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density %C	ompaction
. 1	Tank nole 263 upper section/See sketch below	119.2	9.2	109.1	112.4	97%
2	1	118.9	9.7	108.4	112.4	96%
3		116.3	10	105.7	112.4	94%
4		114.9	10.9	103.6	112.4	92%
	\checkmark	112 8	11.9	100.8	112.4	90%

Compaction Requirements:

Drawing not to scale

Distribute Client

Distribute Other 1

Reviewed By:

Alan Hale

Distribute Engineer

Distribute Other 2

Tested By:

Tara Randolph Pfaf

Distribute Municipality

Distribute Other 3

Distribute Contractor Distribute Architect

Test results indicate the density of the material at the above indicated locations, at the time and conditions when the test was conducted.

Report Number 3037

AAR Testing Caboratory Inc. 7126 180th Ave. N.E. Park 180 Suite C101 Redmond W.

Client:

Wyser Construction

Project Number

03-100

Contact:

Project Name:

Edmonds Unocal

Address:

17125 Sunset Road

Address:

Pine Street

Bothell, WA 98012

Permit Number:

NA

Date:

2/24/03

Time:

1:00:00 PM

Material Data

Material Description: Fine Silty Sand w/Min.

Compaction Method: Roller

Source:

Unknown

Layer Thickness:

Import/Rinker

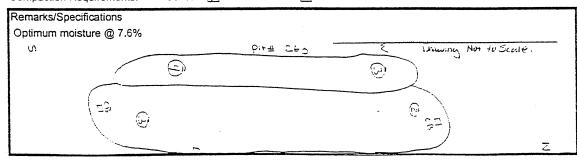
Nuclear Gauge: Troxler 3430 019274

Test Methods:

Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter

aborati


				200 PM 200 C
Modified	Proctor A	MTSA	D1557	7

	andar		
Density Count:	2296	Moisture Count:	651

Test#	Locations/Elevations	Wet Density N	Moisture%	Dry Density	Lab Density ^c	%Compaction
1	Trench Back fill @ grade/See sketch for locations	117.6	9.6	107.3	112.4	95%
2	Trench back fill @ grade	119.7	9.7	109.1	112.4	97%
3	Trench back fill -4 1/2' below grade	110.9	8	102.7	112.4	91%
4	Trench back fill -4 1/2' below grade	113.6	8.1	105.1	112.4	94%

Compaction Requirements:

✓ Conformance Non Conformance

✓ Distribute Client

Distribute Other 1

Reviewed By:

Alan Hale

Distribute Engineer

Distribute Other 2

Tested By:

Norgar, Jason NO

Distribute Municipality Distribute Contractor

AAR Testing is strictly forbidden.

Distribute Other 3

Test results indicate the density of the material at the above indicated locations, at the time

and conditions when the test was conducted. Distribute Architect All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. .Reproduction except in full, without the written consent of

Report Number 4959

A.A.R. Testing Laboratory, Inc. 2126 180th Ave. N.E. Park 180; Suite C101; Redmond, W.A.

Client:

Wyser Construction

Project Number

03-100

Contact:

Address:

17125 Sunset Road

Project Name:

Edmonds Unocal

Address:

Pine Street

Bothell, WA 98012

Permit Number:

NA

Date:

2/24/03

Time:

1:07:00 PM

Material Data

Material Description: Fine Silty Sand w/Min.

Layer Thickness:

Unknown

Source:

Import/Rinker

Compaction Method: Roller

Per Device

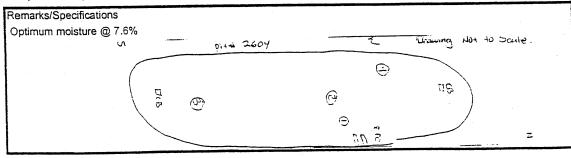
Nuclear Gauge:

Troxler 3430 019274

Test Methods:

Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter


aboratory: resembling

	Modified Proctor ASTM D1557	Density Count:		2296	Moisture Count:	651	
Test#	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density %C	ompaction	
1	Pit #2604 Back fill/See sketch below for locations/-6'	116.6	9	106.9	112.4	95%	
2	-5'	115.9	8.7	106.6	112.4	95%	
3	-4'	112.7	7 8.5	103.9	112.4	92%	
4	-4 '	114.6	5 9	105.1	112.4	94%	

Compaction Requirements:

Conformance

☐ Non Conformance

Distribute Client

Distribute Other 1

Reviewed By:

Alan Haie

Distribute Engineer

Distribute Other 2

Tested By:

Norgar, Jason NO

Distribute Municipality

Distribute Architect

Distribute Other 3

Distribute Contractor

Test results indicate the density of the material at the above indicated locations, at the time and conditions when the test was conducted.

Field Density Report - Nuclear Method Report Number 4960

A.A.R.Testing Eaboratory, Inc. 7126-180th Ave. N.E. Park 180, Suite C101, Redmond, WA 98052 Phone 425-88125812 Fax 425-881-5441

	1727										
Client	:	Wyser Const	ructioñ		Pr	oject Numl	oer ()	3-100			
Conta	ict:				Pr	oject Name	e: E	dmon	ds Unocal		
Addre	ess:	17125 Sunse	t Road		A	ddress:	Р	ine St	reet		
		Bothell, WA 9	98012		P	ermit Numb	er: N	Α	•		
Date:		2/24/03			Ti	me:	2	:00:00	РМ		
	incommentate										312
	749	Mater	ial Data	1,444			V.Te	st E	evice :		£
	Mater	ial Description:	Fine Silty Sand	w/Min.		Nuclear Ga	uge:	Troxle	r 3430 01927	1	
	Layer	Thickness:	Unknown			Test Metho	ds: S	oil AS	TM D2922, A	STM D3017	
	Sourc	e:	Import/Rinker			✓ DirectTr	ansmiss	sion	Back Scat	tter	
	Comp	action Method	: Roller								
		Laborator	ya (est:Method.)				St.	andarı	d Count		H
	N	lodified Procto	r ASTM D1557		Den	sity Count:		2296	Moisture Cou	int: 65	1
Test#		Locations/	Elevations	Wet De	nsity	Moisture%	Dry De	ensity	Lab Density	%Compaction	
6	-18'				117.1	9.7	7	106.8	112.4	95%	

Compaction Requirements:	90 % 🔽 Conform	mance Non Conformance	
Remarks/Specifications Optimum moisture @ 7.4%	6		
		· .	Alan Hale Norgar, Jason NO ove indicated locations, at the time

Report Number 4960

A-A-R Festing Faboratory Inc. 7126180th Ave. N.E. Park 180-Suite C101-Redmond, WA 98052 Prone 495 881 581 21 3 425 881 5441

Client:

Wyser Construction

Project Number

03-100

Contact:

Address:

Project Name:

Edmonds Unocal

17125 Sunset Road

Address:

Pine Street

Bothell, WA 98012

Permit Number:

Date:

Test#

2 -4'

3 -3'

4 -2.5

5 -1'

2/24/03

Time:

2:00:00 PM

Material Data

Material Description: Fine Silty Sand w/Min.

Layer Thickness:

Unknown

Source:

Import/Rinker

Compaction Method: Roller

Device -- --

NA

Nuclear Gauge:

Troxler 3430 019274

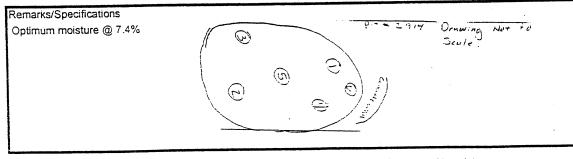
Test Methods:

Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter

112.4

96%


Modified Proctor ASTM D1557

2296 Moisture Count: Density Count Wet Density Moisture% Dry Density Lab Density %Compaction Locations/Elevations 95% 106.9 112.4 115.6 8.1 1 Pit #2914 Trench back fill/See sketch below for locations/-4* 112.4 92% 103.4 112.5 8.7 112.4 98% 110.1 10.2 121.4 96% 112.4 11 108.2 120.1

Compaction Requirements:

9.6

108.3

118.7

✓ Distribute Client

Distribute Other 1

Reviewed By:

Alan Hale

Distribute Engineer

Distribute Other 2

Tested By:

Norgar, Jason NO

Distribute Municipality Distribute Contractor Distribute Architect

Distribute Other 3

Test results indicate the density of the material at the above indicated locations, at the time and conditions when the test was conducted.

A R Lesting Laboratory, Inc. 2126-180th Ave. N.E. Park 180, Suite C101-Redmond, WA

Client:

Wyser Construction

Contact: Address:

17125 Sunset Road

Bothell, WA 98012

Date:

2/24/03

Project Number

03-100

Project Name:

Edmonds Unocal

Address:

Pine Street

Permit Number:

Time:

2:40:00 PM

Material Data Material

Material Description: Fine Silty Sand w/Min.

Layer Thickness:

Unknown

Source:

Import/Rinker

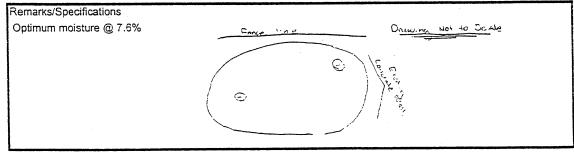
Compaction Method: Roller

Test Device

Nuclear Gauge: Troxler 3430 019274

NA

Test Methods:


Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter

Laboratory tescineurous			Carlos Granda di Codite Carlos de La Carlos de					
Modified Proctor ASTM D1557		Den	Density Count:		Moisture Cou	unt: 651		
Test#	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density	%Compaction		
•	Pit #2798 Trench Back fill -3'/See sketch below for locations	111.3	9.9	101.3	112.4	90%		
2	-3'	112.5	8.7	103.4	112.4	92%		

Compaction Requirements:

✓ Conformance Non Conformance

Distribute Client

Distribute Other 1

Reviewed By:

Alan Hale

Distribute Engineer

Distribute Other 2

Tested By:

Norgar, Jason NO

Distribute Contractor

Distribute Other 3 Distribute Municipality ___

Test results indicate the density of the material at the above indicated locations, at the time

Distribute Architect

and conditions when the test was conducted.

Report Number 3032

				•	report Humber	
A A TO THE	होंग्रेजुड़ क्रीग्लंटीलन् बाल्ड स्थाप्ट होंग्रेज्य होंग	YAVE NE	Park iso	.SmeC	(lie Recimon	aswa:
	980524416HC-95	881.5812 Fa	425.881	500		
Client:	Wyser Construction	Project	t Number	03-100		
Contact:	11,00. 00	Project	t Name:	Edmonds	Unical	
Contact.		Addres	ss:	Pine Stree	et	
Address:	17125 Sunset Road		: Number:	NA		
	Bothell, WA 98012		14dinber.		N.A	
Date:	2/25/03	Time:		1:00:00 P	IVI	
	Material Data			Test De	VIOC STREET	
Mate	erial Description: Sand w/Min. Agg.	Nuc	lear Gauge	: Troxler 3	3430 019274	
	er Thickness: 1'	Tes	t Methods:	Soil AST	M D2922, ASTM	D3017
	rce: Rinker	₩ [DirectTrans	mission [Back Scatter	
	npaction Method: Roller					
				Standard	(ខ្លួញក្នុង ខ្លួន	
	Laborator test Method		A/A F + 1	The second second	Noisture Count:	6
	Modified Proctor ASTM D1557	Density (-
est#	Locations/Elevations W	et Density Mo	isture% D	ry Density (ab Density %C	
11 291	Λ	120.6	9.8	109.9	112.4	98%
11 251	1.	101 5	10.1	110.3	112.4	98%
12	*	121.5	10.1	(10.5		
	05.0%		on Conform	ance		
	n Requirements: 95 % 📝 Confo	mance No	COO			
	Specifications					
Optimum	moisture @ 7.6%					
				1 D	Man Uala	
✓ Distribu	te Client Distribute Other 1		Reviewe	, .	Alan Hale Fara Randolph F	Pfaf
Distribu	te Engineer Distribute Other 2		Tested B	sy:	i ara Kanuoipii i	, cu
	te Municipality Distribute Other 3				سائدها لمستاد	ne at the
	ite Contractor Test results indicate the	ne density of the	: material at ducted.	tine above i	naicated locatio	113, 61 1116
Dictribu	to Architect and conditions when t	HE LEST MAS COLL				

Field Density Report - Nuclear Method Report Number 3032

Client: Contact: Address:	Wyser Construction 17125 Sunset Road	Pro	oject Numbe oject Name: dress:		ds Unical	
	Bothell, WA 98012	Pe	rmit Numbe	er: NA		
Date:	2/25/03	Tir	ne:	1:00:00	PM	
	≟ଃଐଗ୍ରାଜୀଗଞ୍ଚିଶ୍			i estil	evice 🗠 –	
Ma	terial Description: Sand w/Mir	n. Agg.	Nuclear Gau	ige: Troxle	r 3430 019274	
Lay	er Thickness: 1'		Test Method	ts: Soil AS	TM D2922, ASTI	M D3017
Sou	urce: Rinker		✓ DirectTra	ansmission	Back Scatter	
Co	mpaction Method: Roller					
		oo: 100 miles		Standar	1 (equi) - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	
	Modified Proctor ASTM D15		sity Count:		Moisture Count:	64
st#	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density %C	Compaction
6 279	8	116.9	9.4	106.9	112.4	95%
7	1	116.7	7.9	108.1	112.4	96%
8 174	9, last lift	119	9.6	108.5	112.4	97%
9		117.6	9.5	107.4	112.4	96%
10	J	118.	1 7	110.4	112.4	98%
			l Nove Constant			
	n Requirements: 95 % pecifications	✓ Conformance	Non Confor	mance		
	noisture @ 7.6%					
Distribut	e Client Distribute C	other 1	Review	ved By:	Alan Hale	
	e Engineer Distribute C		Tested	By:	Tara Randolph F	Pfaf · .
Distribut						
Distribut Distribut	te Municipality Distribute C te Contractor Test results	other 3 indicate the density of		. 4 41 1	:	na at tha ti

Report Number 3032

AARTesingsaboratoly-in-71265180th-Ave-Na-**Project Number** 03-100 Client: Wyser Construction Project Name: Edmonds Unical Contact: Pine Street Address: 17125 Sunset Road Address: Permit Number: NA Bothell, WA 98012 1:00:00 PM Time: 2/25/03 Date: Take by the Fest Device and the second Maferial Data was Troxler 3430 019274 Nuclear Gauge: Material Description: Sand w/Min. Agg. Soil ASTM D2922, ASTM D3017 Layer Thickness: Test Methods: ✓ DirectTransmission ☐ Back Scatter Source: Rinker Compaction Method: Roller -Sandara Sounte de la c aranoalore estimologe 2271 Moisture Count: Modified Proctor ASTM D1557 Wet Density Moisture% Dry Density Lab Density %Compaction Test # Locations/Elevations 95% 9 106.3 112.4 115.8 1 263 Upper section/See sketch below 96% 112.4 107.7 117.7 9.3 2 99% 112.4 120.9 8.7 111.3 100% 123.7 10.1 112.3 112.4 4 263 lower section 100% 112.4 122.9 9.8 111.9 5 Non Conformance ✓ Conformance Compaction Requirements: Remarks/Specifications Optimum moisture @ 7.6% Drawing not to Scale. Ni Reviewed By: Alan Hale ✓ Distribute Client Distribute Other 1 Tara Randolph Pfaf Tested By: Distribute Other 2 Distribute Engineer Distribute Municipality Distribute Other 3 Test results indicate the density of the material at the above indicated locations, at the time Distribute Contractor

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. .Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

and conditions when the test was conducted.

Distribute Architect

Report Number 4970

A.R. Testing Laboratory, Inc. 7126 180th Ave. N.E., Park 180, Suite C101, Redmond, W.

Client:
Contact:
Address:
Deter

Wyser Construction

Project Number

03-100

Project Name:

Edmonds Unocal

Address:

Pine Street

17125 Sunset Road

Bothell, WA 98012

Permit Number:

NA

Standard Count

2/27/03

Time:

9:30:00 AM

Test Device

Material Data

Material Description: Sand

Layer Thickness:

Unknown

Source:

Import

Nuclear Gauge:

CPN MC1DR MD0069642

Test Methods:

Soil ASTM D2922, ASTM D3017

☑ DirectTransmission ☐ Back Scatter

Compaction Method: Roller/Hoe Pack

Labor	atory.	Test l	Metho	d 😅	
					

		29 and Shareton						
	Modified Proctor ASTM D1557	Den	Density Count:		Moisture Count:	8299		
Test #	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density %C	ompaction		
6 E	Backfill Pit #2604/-2'	118.9	10.6	107.5	112.4	96%		
7 8	Backfill Pit #2604/-3'	116.8	3 10.5	105.7	112.4	94%		
8 8	Backfill Pit #2604/-3'	117.3	3 10.5	106.2	112.4	94%		
9 1	Backfill Pit #2910/ 1st lift/-6	116.9	9 10.1	106.2	112.4	94%		
10 1	Backfill Pit #2910/1st lift/-6'	117.	1 10	106.4	112.4	95%		

Compaction Requirements: 90 %	Y Comonnance	Non Comormance	
Remarks/Specifications			
90% compaction specification @ -41 95% compaction specification @ Grade Optimum moisture @ 7.6%	•		

✓ Distribute Client	Distribute Other 1	Reviewed By:	Alan Hale
Distribute Engineer	Distribute Other 2	Tested By:	Kent, Gena KEN 2
Distribute Municipality	Distribute Other 3		
Distribute Contractor	Test results indicate the de	nsity of the material at the abo	ve indicated locations, at the time
Distribute Architect	and conditions when the tes		

Field Density Report - Nuclear Method Report Number 4970

8299

A.A.R. Festing Laboratory: Inc. 7126 180th Ave. N.E., Park 180, Suite C101. Redmond, WA

98052 Phone 425.881.5812 Fax 425.881.5441

Client:	•	uction		oject Numb oject Name:					
Contac	ct:					Edmonds Unocal			
Addre	ss: 17125 Sunset	t Road	Ac	ldress:	Pine Str	Pine Street			
	Bothell, WA 9	18012	Pe	rmit Numbe	er: NA				
Date:	2/27/03		Ti	me:	9:30:00	AM			
	Mater	a Data			-Test D)evice- »≑			
		,		Nuclear Gau	ige: CPN I	MC1DR MD00696	542		
	Material Description:			Test Method		TM D2922, ASTN			
	Layer Thickness:	Unknown				·	n D3017		
	Source:	Import		✓ DirectTra	ansmission	Back Scatter			
	Compaction Method:	: Roller/Hoe Pa	ick						
	e enogration	y, Test Method			Standar -	d Count			
	Modified Proctor	ASTM D1557	Den	sity Count:	33077	Moisture Count:	829		
Test#	Locations/	Elevations	Wet Density	Moisture%	Dry Density	Lab Density %C	ompaction		
1	Backfill Pit #263/-41		119.8	10.5	108.4	112.4	96%		
2	Backfill Pit #263/-3'		122.7	10.9	110.6	112.4	98%		
3	Backfill Pit #263/-1'		118.2	9.4	108	112.4	96%		
4	Backfill Pit #263/-1'		119	9.5	108.6	112.4	97%		
5	Backfill Pit #2604/-2		118.	1 10.2	107.2	112.4	95%		
Compa	ction Requirements:	90 % 🗹	Conformance	Non Confor	mance				
	ks/Specifications								
	ompaction specification								
•	um moisture @ 7.6%	,,, @ Olade							

✓ Distribute Client Distribute Other 1	Reviewed By:	Alan Hale
Distribute Engineer Distribute Other 2	Tested By:	Kent, Gena KEN 2
Distribute Municipality Distribute Other 3		
Distribute Contractor	nsity of the material at the abo	ove indicated locations, at the time
Distribute Architect and conditions when the te		

Report Number 3035

A.A.R. Testing Laboratory Inc. 7126 180th Ave. N. 1. Park 180 Stric GIV Redmond

Client:

Wyser Construction

Project Number

03-100

Contact:

Project Name:

Edmonds Unocal

Address:

17125 Sunset Road

Address:

Pine Street

Bothell, WA 98012

Permit Number:

NA

Date:

2/27/03

Time:

11:30:00 AM

rational Test Device

Material Data

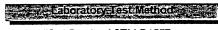
Material Description: Fine Sand w/Min. Agg.

Layer Thickness:

Compaction Method: Roller

Source:

Rinker


Nuclear Gauge:

Troxler 3430 21240

Test Methods:

Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter

	And the control of th	Service Service						
	Modified Proctor ASTM D1557	Den	Density Count:		Moisture Cou	int: 644		
Test#	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density	%Compaction		
1	2911/-5' See sketch below for locations	113.8	3 10	103.5	112.4	92%		
2	2911/Against Concrete barrier	111.4	10.9	105	112.4	93%		
, 3	2910/2nd lift	116.4	1 10.9	105	112.4	93%		
. 4	2910/2nd lift	115.8	3 10.7	104.6	112.4	93%		

90 % Conformance Non Conformance

Remarks/Specifications		
Optimum moisture @ 7.6%		
	2910 2911 #1 #2 - Cancarde Burner	

7	Distribute	Client
v :	Distribute	CHELL

Distribute Other 1

Reviewed By:

Alan Hale

Distribute Engineer

Distribute Other 2

Tested By:

Tara Randolph Pfaf

Distribute Municipality

Distribute Other 3

Distribute Contractor

Test results indicate the density of the material at the above indicated locations, at the time

and conditions when the test was conducted.

Report Number 5000

A.A.R. Testing Laboratory Inc. 7126 180th Ave. N.E. Park 180, Suite C101, Redmond, WA

Client:

17125 Sunset Road

Contact:

Wyser Construction

Project Number

03-100

Project Name:

Edmonds Unocal

Address:

Pine Street

Bothell, WA 98012

Permit Number:

NA

Date:

Address:

2/27/03

Time:

12:40:00 PM

Material Data

Material Description: Fine Sand w/Min. Agg.

Layer Thickness:

Source:

Rinker

Compaction Method: Roller

Nuclear Gauge:

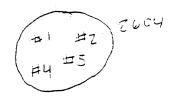
Troxler 3430 21240

Test Methods:

Soil ASTM D2922, ASTM D3017

☑ DirectTransmission ☐ Back Scatter

aboratory resulted method


ACCESSED AND AND ADDRESS OF THE PARTY OF THE				CONTRACTOR OF STREET		Andrew Cockers and Comme		
Modified Proctor ASTM D1557		Den	Density Count		Moisture Cou	int: 644		
Test#	Locations/E	evations	Wet Density	Moisture%	Dry Density	Lab Density	%Compaction	
1	2604/-5'		114.8	9.9	104.4	112.4	93%	
2			115.4	9.8	105.1	112.4	94%	
3			113.	7 9.6	103.7	112.4	92%	
4	Y - 2504/-2'		115.9	9.1	106.2	112.4	94%	

Compaction Requirements:

Remarks/Specifications

Optimum moisture @ 7.6%.

Specification requirement is 90% and 95% for -2'

- 0	Distribute	Client

Distribute Other 1

Reviewed By:

Alan Hale

Distribute Engineer Distribute Municipality

Distribute Other 2

Tested By:

Tara Randolph Pfaf

Distribute Contractor Distribute Architect

Distribute Other 3

Test results indicate the density of the material at the above indicated locations, at the time and conditions when the test was conducted.

Report Number 3034 ARR resting Laboratory Inc. 7126 180th Ave. N.12 Park 180; Store C101, Redmond W. Client: Wyser Construction **Project Number** 03-100 Contact: Project Name: Edmonds Unocal Address: Pine Street Address: 17125 Sunset Road Bothell, WA 98012 Permit Number: NA

Materiak Data Baran

2/27/03

Compaction Method: Roller

Date:

Material Description: Sand w/Min.Agg. Troxler 3430 21240 Nuclear Gauge:

Layer Thickness: Test Methods: Soil ASTM D2922, ASTM D3017

Time:

2:30:00 PM

Source: Rinker ✓ DirectTransmission ☐ Back Scatter

<u>्राच्याच्यालालालालालाला । स्</u>र

Sandard Count - Results - See Modified Proctor ASTM D1557 Density Count: 2267 Moisture Count: Test# Locations/Elevations Wet Density Moisture% Dry Density Lab Density %Compaction 1 2911/-4' 102.7 115.6 12.6 112.4 91% 2 119.3 9.5 109 112.4 97% 114.4 12.2 102 112.4 91% 113.5 11.9 101.4 112.4 90%

✓ Conformance Compaction Requirements: Non Conformance Remarks/Specifications Optimum moisture @ 7.6% 2911

-					
Y	Distribute Client	Distribute	Other 1	Reviewed By:	Alan Hale
_	Distribute Engineer	Distribute	Other 2	Tested By:	Tara Randolph Pfaf
_	Distribute Municipality	Distribute	Other 3		
_	Distribute Contractor Distribute Architect		is indicate the density of the nijons when the test was condu		indicated locations, at the time

Report Number 4962

AR Testing Laboratory Inc-7126-180th Ave N.E. Raik 180 Suite Club Redmond WA

Client:

Wyser Construction

Project Number

03-100

Contact:

Project Name:

Edmonds Unocal

Address:

17125 Sunset Road

Address:

Pine Street

Bothell, WA 98012

Permit Number:

Date:

2/28/03

Time:

10:00:00 AM

Material Data 🗱

Material Description: Fine Silty Sand w/ Agg

Layer Thickness:

Unknown

Source:

Import/Rinker

Compaction Method: Roller

Test Device ===

Nuclear Gauge: Troxler 3430 28462

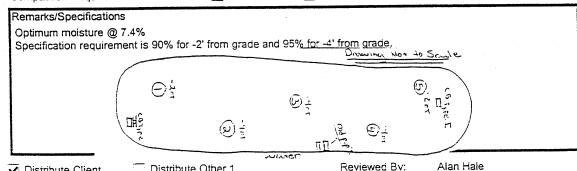
NA

Test Methods:

Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter

and the second s


	Modified Proctor ASTM D1557	Den	sity Count:	2659	Moisture Cou	nt: 635
Test#	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density	%Compaction
1	Trench pit back fill for Pit #2604/-2' See sketch below for locations	119.9	11.1	107.9	112.4	96%
2	-4'	117.3	3 12.3	104.4	112.4	93%
3	-4'	115.7	7 11.4	103.8	112.4	92%
4	-4'	114.:	2 11	102.9	112.4	92%
5	5 - 2'	118.	6 10.7	107.1	112.4	95%

Compaction Requirements:

90 %

✓ Conformance

Non Conformance

✓ Distribute Client

Distribute Other 1

Distribute Engineer

Distribute Other 2

Tested By:

Norgar, Jason NO

Distribute Municipality

Distribute Other 3

Distribute Contractor Distribute Architect

Test results indicate the density of the material at the above indicated locations, at the time and conditions when the test was conducted.

Report Number 4963

Add esting aborator, include 150th Ave. No. Park 180 Stille 1910 Recompile W

Client:

Wyser Construction

Contact:

Address:

17125 Sunset Road

Bothell, WA 98012

Date:

2/28/03

Project Number

03-100

Project Name:

Edmonds Unocal

Address:

Pine Street

Permit Number:

NA

Time:

10:40:00 AM

Materia Data

Material Description: Fine Silty Sand w/Min.

Layer Thickness:

Unknown

Source:

Import/Rinker

Compaction Method: Roller

rest Device

Nuclear Gauge:

Troxler 3430 28462

Test Methods:

Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter

112.4

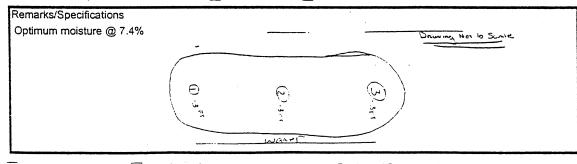
90%

न्यात्वा क्षात्र क्षात

	Modified Proctor ASTM D1557	Den	Density Count:		2659 Moisture Count:			
Test#	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density %0	Compaction		
. 1	Trench pit back fill for Pit #2910/-3' See sketch below for locations	110.	1 9.5	100.5	112.4	89%		
2	j	112.0	5 11.4	101.1	112.4	90%		

111.6

Compaction Requirements:


3

✓ Conformance

Non Conformance

10.9

100.6

✓ Distribute Client

Distribute Other 1

Reviewed By:

Alan Hale

Distribute Engineer

Distribute Other 2

Tested By:

Norgar, Jason NO

Distribute Municipality

Distribute Other 3

Distribute Contractor Distribute Architect

Test results indicate the density of the material at the above indicated locations, at the time and conditions when the test was conducted.

A A R Testing Laboratory, Inc. 7126:180th Ave. N.E. Park 180 Suite C101, Redmond, W. 98052 Phone 425.881

Client:

Wyser Construction

Project Number Project Name:

03-100

Contact: Address:

17125 Sunset Road

Address:

Edmonds Unocal

Pine Street

Bothell, WA 98012

Permit Number:

Date:

2/28/03

Time:

11:20:00. AM

Material Data N. ***

Material Description: Fine Silty Sand w/Agg.

Layer Thickness:

Source:

Unknown

Import/Rinker

Compaction Method: Roller

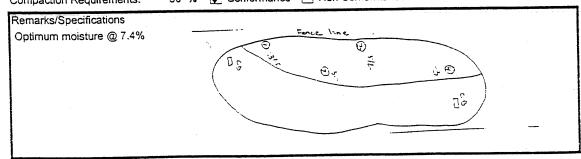
Lick Set Device Land

Nuclear Gauge: Troxler 3430 28462

NA

Test Methods: Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter


Eaboratory reselvethod

	Modified Proctor ASTM D1557	Dens	Density Count		Moisture Cou	int: 635
Test#	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density	%Compaction
1	Trench pit back fill for Pit #263/-3' See sketch below for locations	113.7	9.6	103.7	112.4	92%
2	-3'	112.7	10	102.5	112.4	91%
3	-3 1/2'	115.8	9.8	105.5	112.4	94%
4	-3'	114.6	9.9	104.3	112.4	93%

Compaction Requirements:

✓ Conformance

Non Conformance

✓ Distribute Client

Distribute Other 1

Reviewed By:

Alan Hale

Distribute Engineer

Distribute Other 2

Tested By:

Norgar, Jason NO

Distribute Municipality

Distribute Other 3

Distribute Contractor Distribute Architect

Test results indicate the density of the material at the above indicated locations, at the time and conditions when the test was conducted.

Report Number 3096

AND Lesting Laboratory, inc. 7:126-180th Ave. N.E. Park 180; Suite © 101; Redmond W.

Client:

Wyser Construction

Project Number

03-100

Contact:

Address:

17125 Sunset Road

Project Name:

Edmonds Unocal

Bothell, WA 98012

Pine Street

Date:

3/5/03

Permit Number:

NA

Time:

Address:

10:00:00 AM

Material Data

Material Description: Fine Sand w/Min. Agg.

Layer Thickness:

Source:

Rinker

Compaction Method: Roller

Fest Device

Nuclear Gauge:

Troxler 3430 019274

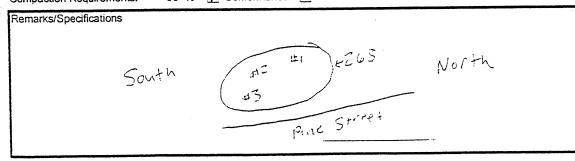
Test Methods:

Soil ASTM D2922, ASTM D3017

☑ DirectTransmission ☐ Back Scatter

esa saboratory restatelnos

space.		A STATE OF THE PARTY OF THE PAR	A CONTRACTOR OF	Al and the			3421.93	
	M	odifi	ed Pro	ctor A	STM	D1557		


	37.00	Stancar		
Den	sity Count:	2289	Moisture Count:	654
nsity	Moisture%	Dry Density	Lab Density %Com	paction

Test#	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density %Com	paction
1	263 South end/-1' See sketch below for locations	119.2	8.4	110	112.4	98%
2		118.1	7.9	109.5	112.4	97%
3	Ψ	120.2	8.3	110.9	112.4	99%

Compaction Requirements:

✓ Conformance

Non Conformance

✓ Distribute Client

Distribute Other 1

Reviewed By:

Alan Hale

Distribute Engineer

Distribute Other 2

Tested By:

Tara Randolph Pfaf

Distribute Municipality Distribute Contractor

Distribute Other 3

Test results indicate the density of the material at the above indicated locations, at the time

Distribute Architect

and conditions when the test was conducted.

Report Number 3097

A:R-Testing-Faboratory, Inc. 7/26-180th-Ave. N.E., Park 180, Suite Ctot. Redmond, W.

Client:

Wyser Construction

Project Number

03-100

Contact: Address:

17125 Sunset Road

Project Name:

Edmonds Unocal

Bothell, WA 98012

Address:

Pine Street

Permit Number:

NA

Date:

3/5/03

Time:

11:15:00 AM

Material Dafaeta

Material Description: Sand w/Min. Agg.

Layer Thickness:

Source:

Rinker

Compaction Method: Roller

Test Device - - - -

Nuclear Gauge:

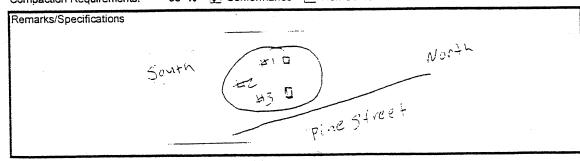
Troxler 3430 019274

Test Methods:

Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter

See Service Control of the Service Control of	ı
Modified Proctor ASTM D1557	


	्रञ्चम्बद्धाः Çettil	
Density Count:	2289 Moisture Count:	654
	Dr. Doneity Lab Deneity % Compac	tion

Test #	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density %Com	paction
1	263 South end, last lift See sketch below for locations	119.2	9.2	109.1	112.4	97%
2		116.3	9.1	106.5	112.4	95%
3	V	113.9	6.8	106.6	112.4	95%

Compaction Requirements:

✓ Conformance

Non Conformance

Distribute Client

Distribute Other 1

Reviewed By:

Alan Haie

Distribute Engineer

Distribute Other 2

Tested By:

Tara Randolph Pfaf

Distribute Municipality

Distribute Architect

Distribute Other 3

Distribute Contractor

Test results indicate the density of the material at the above indicated locations, at the time

and conditions when the test was conducted.

Report Number 3087

A-A-R-Testing Paboratory Inc. 7:26:180th Ave-Nat-Park-180-Smite G101-Redmond WA

Client:

Wyser Construction

Contact:

Address:

17125 Sunset Road

Bothell, WA 98012

Date:

3/31/03

Project Number

Project Name:

Edmonds Unocal

Address:

Pine Street

03-100

Permit Number:

NA

Time:

8:45:00 AM

Maieria Data 🚉 🗀

Material Description: Sand with minimal agg

Layer Thickness:

Unknown

Source:

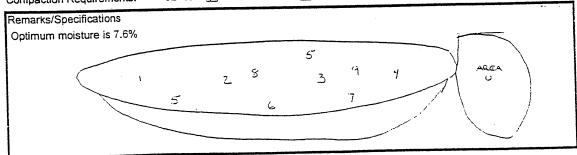
Rinker

Compaction Method: Vibratory Roller

Test Device

Nuclear Gauge: Troxler 3430 019274

Soil ASTM D2922, ASTM D3017 Test Methods:


Siandaro Coulii:

☑ DirectTransmission ☐ Back Scatter

•	Modified Proctor ASTM D1557	Density Count:		2259	Moisture Cour	nt: 648
Test#	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density %	6Compaction
6	-3' 2nd Lift	117	9.5	106.8	112.4	95%
7	-3'	118.8	3 12	106.1	112.4	94%
8	3 1/2'	115.	5 10.1	104.8	112.4	93%
9	-3 1/2'	117.0	9.6	107.3	112.4	95%

Compaction Requirements:

92 %

Distribute Client

Distribute Other 1

Reviewed By:

Haie, Alan

Distribute Engineer Distribute Municipality

Distribute Other 2 Distribute Other 3 Tested By:

Norgar, Jason NO

Distribute Contractor Distribute Architect

Test results indicate the density of the material at the above indicated locations, at the time and conditions when the test was conducted.

648

Field Density Report - Nuclear Method

Report Number 3087

A-A-R-Testing Laboratory Inc. 2126-180th Ave. N.E. Raik 180-Suite C101-Redmond W 98052 Phone 42

Client:

Wyser Construction

Project Number Project Name:

03-100

Contact: Address:

17125 Sunset Road

Address:

Edmonds Unocal Pine Street

Bothell, WA 98012

Permit Number:

NA

Date:

3/31/03

Time:

8:45:00 AM

Material Data

Material Description: Sand with minimal agg

Layer Thickness:

Unknown

Source:

Rinker

Compaction Method: Vibratory Roller

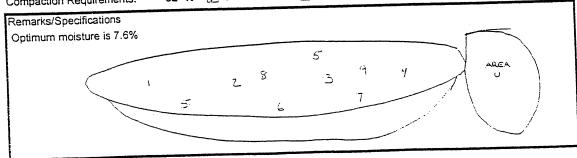
rest Device

Troxler 3430 019274 Nuclear Gauge:

Soil ASTM D2922, ASTM D3017 Test Methods:

☑ DirectTransmission ☐ Back Scatter

Count


	Modified Proctor ASTM D1557			Sizhualetedune				
				sity Count	2259	Moisture		
Test#	Locations/Elevations	Wet De	ensity	Moisture%	Dry Density	Lab Den		
1	Pit #2912 See Sketch -4'		111.	8 7.8	103.7	1		
			. 44	2 0	103.6	1		

Modifica		and the second second	Wet Density Moisture% Dry Density Lat				
Test#	Locations/Elevations	Wet Density Mois	sture% [Dry Density Lat	Density %CC		
1 6	Pit #2912 See Sketch -4'	111.8	7.8	103.7	112.4	92%	
2	-4'	113	9	103.6	112.4	92%	
3	-4 1/2'	113.9	7.8	105.7	112.4	94%	
4	-4'	115.8	9.2	106	112.4	94%	
5	-4 1/2'	109.1	6	102.9	112.4	92%	

Compaction Requirements:

✓ Conformance

Non Conformance

- ▼ Distribute Client
- Distribute Other 1
- Reviewed By:

Hale, Alan

Distribute Engineer Distribute Municipality

Distribute Other 2 Distribute Other 3 Tested By:

Norgar, Jason NO

Distribute Contractor

Test results indicate the density of the material at the above indicated locations, at the time

and conditions when the test was conducted. Distribute Architect

All reports are considered confidential and are the property or the client and AAR Testing Laboratory Inc. .Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

Report Number 3003

A.A.R Testing Laboratory, inc. 7126 180th Ave. N. 22 Park 180; Suite C101; Redmond, WA

Client:

Wyser Construction

Project Number

03-100

Contact:

Address:

17125 Sunset Road

Project Name:

Edmonds Unocal

Address:

Pine Street

Bothell, WA 98012

Permit Number:

NA

2:30:00 PM

Troxler 3430 21240

Date:

4/1/03

Time:

Material Data 🐸 🗀

Material Description: Sand with aggregate

Source:

Layer Thickness:

Unknown

Rinker

Test Methods:

Nuclear Gauge:

Soil ASTM D2922, ASTM D3017

Test Device = -

Compaction Method: Vibratory Roller

Laboratory est Method + --Modified Proctor ASTM D1557

		Standar	e configuration	
Den	sity Count:	2276	Moisture Count:	654
nsity	Moisture%	Dry Density	Lab Density %Con	npaction

	Modified Freeze Freeze				and a companion of the contract of the contrac
Test#	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density %Compaction
6		130.2	11.6	116.7	116.8 100%
7		120.9	10.5	109.4	116.8 94%
.8	$\downarrow \downarrow$	127.6	5 11	114.9	116.8 98%

Compaction Requirements:

Remarks/Specifications

Observed some oversize aggregate in the sand and believe it's the cause of 100+ compaction. Obtained a sample to have an aggregate correction factor ran. Sample was obtained from underneath the gauge from test #8. The results on this report is with the aggregate correction applied.

✓ Distribute Client

Distribute Other 1

Reviewed By:

Hale, Alan

Distribute Engineer Distribute Municipality

Distribute Other 2 Distribute Other 3

Tested By:

Randolph, Tara

Distribute Contractor Distribute Architect

Test results indicate the density of the material at the above indicated locations, at the time and conditions when the test was conducted.

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. .Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

Report Number 3003

A.A.R.Testing Laboratory, Inc. 7126 180th Ave. N.E. Park 180, Suite C101, Redmond, WA 98052 Phone 425.881

Client:

Wyser Construction

Contact:

Address:

17125 Sunset Road

Bothell, WA 98012

Date:

4/1/03

Project Number

Project Name:

03-100 Edmonds Unocal

Address:

Pine Street

Permit Number:

NA

Time:

2:30:00 PM

Material Data

Material Description: Sand with aggregate

Layer Thickness:

Unknown

Source:

Rinker

Compaction Method: Vibratory Roller

Test Device

Nuclear Gauge:

Troxler 3430 21240

Test Methods:

Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter

2.5	Laboratory Test Method
	Modified Proctor ASTM D1557

		Standar Standar	d Count	Cartery.
Den	sity Count:	2276	Moisture Count:	654
sity	Moisture%	Dry Density	Lab Density %Cor	npaction

	Modified Proctor ASTM D1337	555	.,			
Test#	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density %C	ompaction
1 Test	t Hole 2912 2nd Lift	126.1	10.5	114.1	116.8	98%
2		128	11.2	115.1	116.8	99%
3		118	9.9	107.4	116.8	92%
4		126.9	10.3	115	116.8	98%
5 Tes	at Hole 2912 3rd Lift	125.3	10.8	113.1	116.8	97%
	مله مله					

Compaction Requirements:

90 %

Remarks/Specifications

Observed some oversize aggregate in the sand and believe it's the cause of 100+ compaction. Obtained a sample to have an aggregate correction factor ran. Sample was obtained from underneath the gauge from test #8. The results on this report is with the aggregate correction applied.

✓ Distribute Client Distribute Engineer Distribute Other 1

Reviewed By:

Hale, Alan

Distribute Municipality

Distribute Other 2 Distribute Other 3 Tested By:

Randolph, Tara

Distribute Contractor Distribute Architect

Test results indicate the density of the material at the above indicated locations, at the time and conditions when the test was conducted.

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

Report Number 4185

A.R.Testing I				

Client:

Wyser Construction

Project Number

03-100

Contact:

Project Name:

Edmonds Unocal

Address:

17125 Sunset Road

Address:

Pine Street

Bothell, WA 98012

Permit Number:

Date:

4/1/03

Time:

2:30:00 PM

Material Data : - - -

Material Description: Sand with minimal Ag

Layer Thickness:

Source:

Unknown

Rinker

Compaction Method: Vibratory Roller

Test Device

Nuclear Gauge: Troxler 3430 21240

NA

Test Methods:

Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter

Laboratory Test Method

	THE PROPERTY CONTRACTOR SHOWS TO SECURE	2	Andrew States Managers and re-			
	Modified Proctor ASTM D1557	Dens	Density Count		Moisture Count	654
Test#	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density %	Compaction
1	Test Hole 4120, 1st lift	113.9	7.3	106.1	112.4	94%
2		116.3	7.9	107.8	112.4	96%

Compaction Requirements:	90 %	✓ Conformance	☐ Non Conformance	
Remarks/Specifications				
	Distribute C Distribute C	Other 2	Reviewed By: Tested By:	Hale, Alan Randolph, Tara
Distribute Contractor Distribute Architect	Test results and condition	indicate the density ons when the test w	as conducted.	re indicated locations, at the time

Report Number 3089

A-A-R-Testing Laboratory Inc. 7126-180 th Ave N.E. Park 180, Suite C101, Redmond, W. 03-100

Client:

Wyser Construction

Contact:

Address:

17125 Sunset Road

Bothell, WA 98012

Date:

4/2/03

Project Number

Project Name:

Edmonds Unocal

Address:

Pine Street

Permit Number:

NA

Time:

11:40:00 AM

Material Data

Material Description: Sand with minimal agg

Layer Thickness:

Unknown

Source:

Rinker

Compaction Method: 95

Test Device

Troxler 3430 019274 Nuclear Gauge:

Test Methods:

Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter

Eaboratory (est Method)
Modified Proctor ASTM D1557

		Section 1					
	Modified Proctor ASTM D1557		sity Count		Moisture Cour	and the second second	
Test#	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density 9	%Compaction	
1	Final Lift for Test pit #4120	117	8.1	108.2	112.4	96%	
2		116.2	9.2	106.4	112.4	95%	
3		116.7	7 9.4	106.7	112.4		
4		114.6	5 7. 6	106.5	112.4	95%	
_		114.	8 6.9	107.4	112.4	96%	

95 % Conformance Non Conformance

Compaction Requirements.	33 /4 32 00	
Remarks/Specifications		2
Optimum Moisture is 7.6%		Drawing Max 10-20 Mg

Distribute Client

Distribute Other 1

Hale, Alan

Distribute Engineer

Distribute Other 2

Reviewed By: Tested By:

Norgar, Jason NO

Distribute Municipality Distribute Contractor

Distribute Other 3

Distribute Architect

Test results indicate the density of the material at the above indicated locations, at the time and conditions when the test was conducted.

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc., Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

COMPACTION TEST REPORT

Curve No.: 101

Project No.: 03-100

Project: Unical Edmonds

Date: 4/2/03

Location:

Elev./Depth:

Sample No. 1

Remarks: tested/calculated by m.holtz

reviewed by a. hale

MATERIAL DESCRIPTION

Description: import drk med sand w/ 1 1/2" agg

Classifications -

USCS:

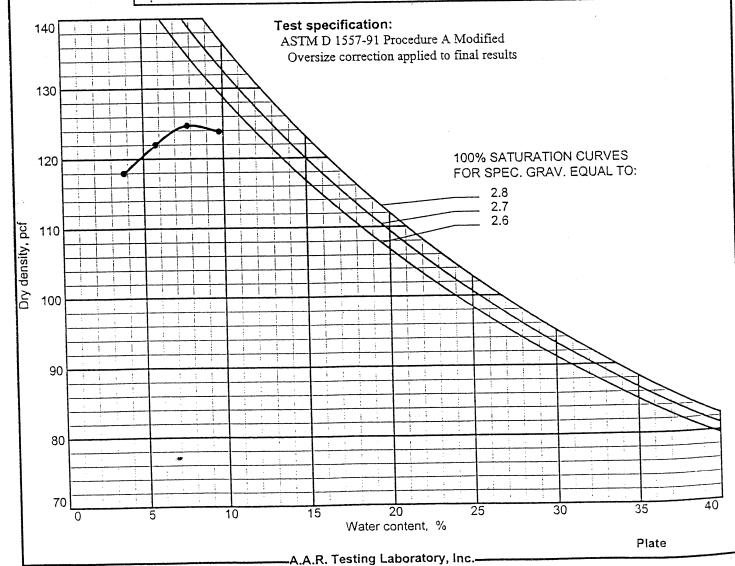
AASHTO:

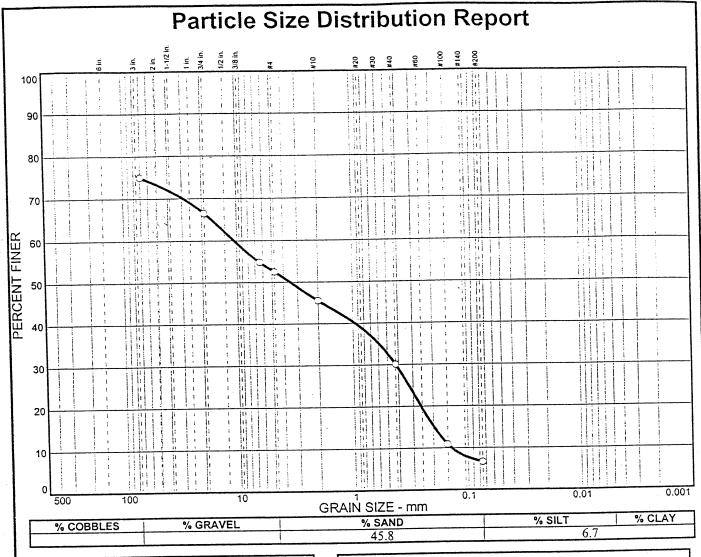
Nat. Moist. =

Sp.G. = 2.64

Liquid Limit =

Plasticity Index =


% > No.4 = 11.8 %


% < No.200 = 0.0 %

TEST RESULTS

Maximum dry density = 128.4 pcf

Optimum moisture = 7.1 %

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1 1/4 in. 3/4 in. 1/4 in. #4 #10 #40 #100 #200	75.0 66.5 54.8 52.5 45.5 30.1 10.9 6.7		

	Soil Description	<u>n</u>
import drk med sa	nd w/ 1 1/2" agg	
j 03		
	Atterberg Limit	
PL=	LL=	PI=
	Coefficients	
D ₈₅ =	$D_{60} = 10.5$	D ₅₀ = 3.49 D ₁₀ = 0.138
D ₈₅ = D ₃₀ = 0.423 C _u = 76.01	$D_{15} = 0.197$ $C_{c} = 0.12$	0.138
Cu- 70.01	J	
	Classification	
USCS=	AASH	110-
	Remarks	,
tested/calculated		
reviewed by a. ha	ale	

(no specification provided)

Sample No.: 1 Location: Source of Sample: native bremerton site

Date: 4/7/03

Elev./Depth:

A.A.R. Testing Laboratory, Inc. Client: Wyser Construction
Project: Unical Edmonds

Project No: 03-100

Plate

COMPACTION TEST REPORT

Curve No.: 104

Project No.: 03-100

Project: Unical Edmonds

Date: 4/8/03

Location:

Elev./Depth:

Sample No. 1

Remarks: tested/calculated by m.holtz

reviewed by a. hale

MATERIAL DESCRIPTION

Description: fine silty sand w/ minimal agg

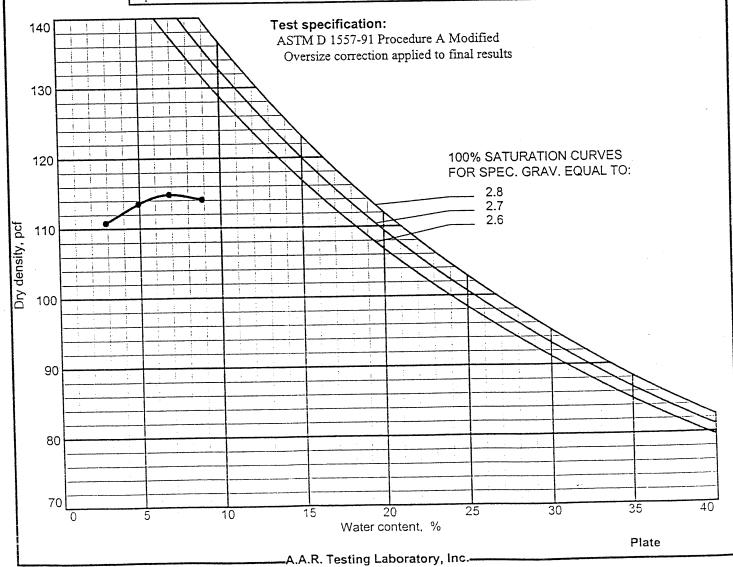
Classifications -

USCS:

AASHTO:

Nat. Moist. =

Sp.G. = 2.64Plasticity Index =


Liquid Limit = % > No.4 = 5.5 %

% < No.200 = 0.0 %

TEST RESULTS

Maximum dry density = 116.8 pcf

Optimum moisture = 6.5 %

Field Report

Report Number: 34644

Client:	Wyser Construction	Pr	oject Number:	03-100	
	17125 Sunset Road	Pe	ermit #:	NA	
	Bothell, WA 98012	Pr	oject Name:	Edmonds Unocal	
Contact		Ad	idress:	Pine Street	
Date:	4/8/03	Time:	9:00:00 AM	Temperature:	

On site for compaction for pit #218. Due to high moisture from rain, the edges and lower section is pumping. Contractor removed saturated material, put down filter fabric and 2"-4" rock, then put dryer material in. Will be ready for compaction testing tomorrow.

Distribution:	✓ Distribute Client Distribute Contractor	Inspector:	Norgar, Jason NOR 06 5854
	Distribute Engineer Distribute Owner Distribute Municipality Distribute Other	Reviewed by:	Kim Anderson
	Distribute Architect Distribute Other		

All reports are considered confidential and are the property of the client and A.A.R. Testing Laboratory, Inc. Reproduction except in full without the written consent of A.A.R. Testing is strictly forbidden

Report Number 3118a

ke 180 Smite C101 - Redmond - WA

Client:

Date:

Wyser Construction

Project Number

03-100

Contact: Address:

17125 Sunset Road

Project Name:

Edmonds Unocal

Bothell, WA 98012

Address:

Pine Street

4/8/03

Permit Number: Time:

9:30:00 AM

A Material Data: **

Material Description: Sand with minimal agg

Layer Thickness:

Unknown

Source:

Rinker

Compaction Method: Vibratory Roller

* Test Dévice : ***

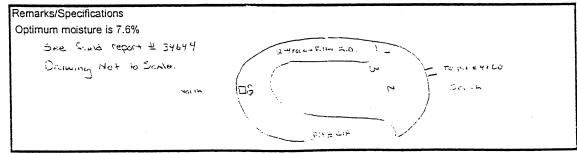
Nuclear Gauge: Troxler 3430 28462

NA

Test Methods: Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter

Estimatory resementades


Spot Spot Spot Spot Spot Spot Spot Spot
Modified Proctor ASTM D1557
the state of the s

	Standar	4.Comes - Se	
Density Count:	2661	Moisture Count:	619

Test#	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density	%Compaction
1 F	Final Lift for Pit #218	120.3	13.1	106.4	112.4	95%
2		121.4	13	107.4	112.4	96%
3	1	119.9	12.7	106.4	112.4	95%

Compaction Requirements:

✓ Conformance Non Conformance

✓ Distribute Client

Distribute Other 1

Reviewed By:

Hale, Alan

Distribute Engineer

Distribute Other 2

Tested By:

Norgar, Jason NO

Distribute Contractor Distribute Architect

Distribute Municipality Distribute Other 3

Test results indicate the density of the material at the above indicated locations, at the time and conditions when the test was conducted.

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. Reproduction except in full, without the written consent of AAR Testing is strictly torbidden.

Field Report

Report Number: 34612

Contact Date:	4/9/03	Address:	Pine Street Temperature:
	Bothell, WA 98012	Project Name:	Edmonds Unocal
	17125 Sunset Road	Permit #:	NA
Client:	Wyser Construction	Project Number:	03-100

On site for compaction for pit #218. Due to high moisture around the edge of the pit, where water had no where to drain, Contractor removed saturated material by digging out a trench approximately 6' width and 4' in depth. Filter fabric was placed with 2" to 4" rock for drainage. Due to overnight rain, moisture readings were high, ranging from 10% to 13%. However, material appeared firm and unyielding after rolling. Please refer to report #3071, for compaction results.

Distribution:	✓ Distribute Client Distribute Contractor Distribute Engineer Distribute Owner	Inspector:	Norgar, Jason NOR 06 5854
	Distribute Municipality Distribute Other	Reviewed by:	Kim Anderson
•	Distribute Architect Distribute Other		

All reports are considered confidential and are the property of the client and A.A.R. Testing Laboratory, Inc. Reproduction except in full without the written consent of A.A.R. Testing is strictly forbidden

Report Number 3072

A A: R: Festing Laboratory Inc. 71/261801hr Ave. N. 1:: Park 180; Suite @101; Redmond, WA

Client:

Wyser Construction

Project Number

03-100

Contact: Address:

Project Name:

Edmonds Unocal

17125 Sunset Road

Address:

Pine Street

Bothell, WA 98012

Permit Number:

NA

Date:

4/9/03

Time:

9:00:00 AM

Material Data

Material Description: Sand with 2'-4' aggreg

Layer Thickness:

Unknown

Source:

Rinker

Compaction Method: Vibratory Roller

lest Device

Nuclear Gauge:

Troxler 3430 019274

Test Methods:

Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter

Modified Proctor ASTM D1557

Standard Count 1997 1997 Density Count:

2720 Moisture Count:

Locations/Elevations Test# 11 12

Wet Density Moisture% Dry Density Lab Density %Compaction

116.6 95% 11.6 110.8 123.7 96% 116.6 123.8 10.7 111.8

Compaction Requirements:

✓ Conformance

☐ Non Conformance

Remarks/Specifications	Drawing not to scale. Tests #9 through #12 have a 95% compaction requirement.
Optimum moisture is 6.4%.	Drawing not to Scale. Total #0 4 100 5
	(C)

- Distribute Client
- Distribute Other 1
- Reviewed By:
- Hale, Alan

- Distribute Engineer
- Distribute Other 2 Distribute Other 3
- Tested By:
- Norgar, Jason NO

- Distribute Municipality Distribute Contractor
- Distribute Architect
- Test results indicate the density of the material at the above indicated locations, at the time
- and conditions when the test was conducted.

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc., Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

Report Number 3072

WA Revesting Faboratory Bine 4026 1800 Ave N. E. Park 180 Suite C101 Redmond WA **Project Number** 03-100 Wyser Construction Client: Edmonds Unocal Project Name: Contact:

17125 Sunset Road Address:

Bothell, WA 98012

4/9/03 Date:

Pine Street Address:

Permit Number: NA

Time:

9:00:00 AM

Material Data

Material Description: Sand with 2'-4' aggreg

Layer Thickness:

Unknown

Source:

Rinker

Compaction Method: Vibratory Roller

est Device and a series

Nuclear Gauge: Troxler 3430 019274

Soil ASTM D2922, ASTM D3017 Test Methods:

✓ DirectTransmission ☐ Back Scatter

Production of the little of th

			CONTRACTOR OF THE PARTY OF THE	作品を はまり 主要 まんか		And the second second		
	Modified Proctor ASTM D1557	Dens	sity Count:	2720	Moisture Count:	644		
Test#	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density %C	ompaction		
6	Pit #218, 2nd Lift, See sketch for locations	124	11.7	111.5	116.6	96%		
7		122.8	10.9	110.5	116.6	95%		
8		120.7	7 10.8	108.7	116.6	93%		
9	Pit #218, 3rd Lift, See sketch for locations	123.	1 11.1	110.8	116.6	95%		
10		123.	2 11.7	110.2	116.6	95%		

Compaction Requirements:

Remarks/Specifications Optimum moisture is 6.4%. Drawing not to scale. Tests #9 through #12 have a 95% compaction requirement.

Distribute Clien	t
------------------	---

Distribute Other 1

Reviewed By:

Hale, Alan

Distribute Engineer Distribute Municipality Distribute Other 2 Distribute Other 3 Tested By:

Norgar, Jason NO

Distribute Contractor

Test results indicate the density of the material at the above indicated locations, at the time

and conditions when the test was conducted. Distribute Architect

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc., Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

Report Number 3072

Rack 180 Strike C101 Redmond WA A A R Testing Laboratory Inc. /126-180th Ave.

Client:

Wyser Construction

Project Number

03-100

Contact: Address:

17125 Şunset Road

Project Name: Address:

Edmonds Unocal

Pine Street

Bothell, WA 98012

Permit Number:

Date:

4/9/03

Time:

9:00:00 AM

Maferal Data - Marena Data

Material Description: Sand with 2'-4' aggreg

Layer Thickness:

Unknown

Source:

Rinker

Compaction Method: Vibratory Roller

Nuclear Gauge: Troxler 3430 019274

107.2

NA

Test Methods:

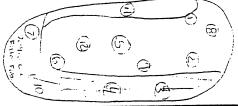
Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter

92%

116.6

	Modified Proctor ASTM D1557	Den	Density Count:		Moisture Count	644
Test#	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density %0	Compaction
1 F	Pit #218, 1st lift, See Sketch for locations	121.7	10.6	110.1	116.6	94%
2		120.5	5 13	106.6	116.6	91%
3		119.1	11.4	106.9	116.6	92%
4		123.9	9 11	111.6	116.6	96%


121.1

Compaction Requirements:

5

92 %

Remarks/Specifications Optimum moisture is 6.4%. Drawing not to scale. Tests #9 through #12 have a 95% compaction requirement.

	Distribute	Cliont
•	DISHIDULE	CHEIL

Distribute Other 1

Reviewed By:

Hale, Alan

Distribute Engineer

Distribute Other 2

Tested By:

Norgar, Jason NO

Distribute Municipality Distribute Contractor

Distribute Other 3

Distribute Architect

Test results indicate the density of the material at the above indicated locations, at the time

and conditions when the test was conducted.

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

Report Number 3095

A A Ruesting Laboratory inc 1/106-180th Ave NE Park 180 Suite C101-Redmond, WA

Client:

Wyser Construction

Project Number

03-100

Contact:

Address:

Project Name:

Edmonds Unocal

Address: 17125 Sunset Road

Pine Street

Bothell, WA 98012

Permit Number:

NA

Date:

4/10/03

Time:

12:07:00 PM

Material Data Live

Material Description: Sand with minimal Ag

Layer Thickness:

Unknown

Source:

2

Rinker

Compaction Method: Vibratory Roller

1 Water Main Trench, Pit #U, 1st Lift

Test Device

Nuclear Gauge:

Troxler 3430 28462

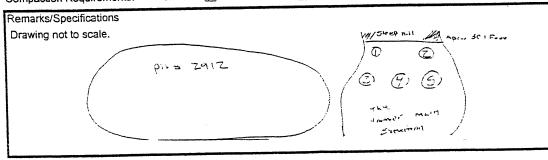
Test Methods:

Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter

112.4

92%


	- Interest of the second	等并在
1	Modified Proctor ASTM D1557	
Test#	Locations/Elevations	Wet

Density Count:		2654	Moisture Count:	636
Density Moisture%		Dry Density	Lab Density %C	ompaction
112.8	9.2	103.3	112.4	92%
111.4	7.7	103.4	112.4	92%
111.1	8.2	102.7	112.4	91%
112.8	3 8.5	104	112.4	93%

103.9

Compaction Requirements:

8.6

112.8

Distribute Client

Distribute Other 1

Reviewed By:

Hale, Alan

Distribute Engineer

Distribute Other 2 Distribute Other 3 Tested By:

Norgar, Jason NO

Distribute Municipality Distribute Contractor

Test results indicate the density of the material at the above indicated locations, at the time

Distribute Architect

and conditions when the test was conducted.

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. .Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

Report Number 3117

Suite C101, Redmond, WA A.A.R. Testing Laboratory, Inc. 7126 180th Ave. N.E. Park 180

Client:

Wyser Construction

Project Number

03-100

Contact:

Address:

Date:

Bothell, WA 98012

Project Name: Address:

Edmonds Unocal

17125 Sunset Road

Pine Street

4/11/03

Permit Number:

Time:

7:15:00 AM

Material Data

Material Description: Sand with minimal agg

Layer Thickness:

Unknown

Source:

Rinker

Compaction Method: Vibratory Roller

PARTIEST Device

NA

Nuclear Gauge:

Troxler 3430 28462

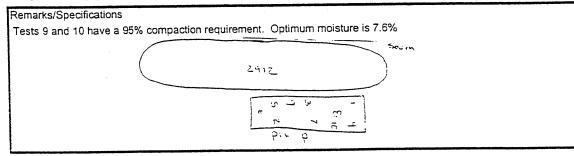
Test Methods:

Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter

Laboratory Test Method: 10 mg

Modified Proctor ASTM D1557


	Standar	d Court & Sales	
Density Count	2666	Moisture Count:	622

Test #	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density %Compaction	n n
1 Pit P	1st Lift See Sketch	116.7	10	105.1	112.4 94%	
2		114.7	9	105.2	112.4 94%	
3 Pit P	2nd Lift See Sketch	112.2	8.9	103.1	112.4 92%	
4		113.6	9	104.2	112.4 93%	
5 Pit P	3rd Lift See Sketch	111.8	. 8	103.5	112.4 92%	

Compaction Requirements:

92 % Conformance

Non Conformance

	~	OI: .
•	Distribute	Hent

Distribute Other 1

Reviewed By:

Hale, Alan

Distribute Engineer

Distribute Other 2

Tested By:

Norgar, Jason NO

Distribute Municipality: Distribute Contractor

Distribute Other 3

Test results indicate the density of the material at the above indicated locations, at the time

Distribute Architect

and conditions when the test was conducted.

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. . Reproduction except in full, without the written consent of AAR Testing is strictly torbidden.

Report Number 3116

A.A.R. Testing Laboratory inc 7/126:180th Ave. N.E. Park 180; Suite @101-Redmond; WA

Client:

Wyser Construction

Contact:

Address:

17125 Sunset Road

Bothell, WA 98012

Date:

4/11/03

Project Number

03-100

Project Name:

Edmonds Unocal

Address:

Pine Street

Permit Number:

NA

Time:

9:50:00 AM

Material Datas

Material Description: Sand with minimal agg

Layer Thickness:

Unknown

Source:

Rinker

Compaction Method: Vibratory Roller

Test Device State of the state

Nuclear Gauge:

Troxler 3430 28462

Test Methods:

Soil ASTM D2922, ASTM D3017

☑ DirectTransmission ☐ Back Scatter

Laboratoria estimativos estimativos

	A STATE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.		The second secon	Action to the state of the state of		
Modified Proctor ASTM D1557		Den	sity Count:	2666	Moisture Cour	nt: 622
Test#	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density %	6Compaction
11	1	113.	7 9.5	103.8	112.4	92%
12		112.	7 7.9	104.4	112.4	93%
13		112.	8 8	104.4	112.4	93%

Non Conformance ✓ Conformance Compaction Requirements: 90 % Remarks/Specifications Optimum moisture is 7.6%. Drawing not to scale. 2912

Distribute Client

Distribute Other 1

Reviewed By:

Hale, Alan

Distribute Engineer

Distribute Other 2

Tested By: Norgar, Jason NO

Distribute Contractor Distribute Architect

Distribute Municipality Distribute Other 3

Test results indicate the density of the material at the above indicated locations, at the time

and conditions when the test was conducted.

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

Report Number 3116

ark 180 Suite C 101 Reamond A A R Testing Laboratory Inc 2026 180th Ave. N.E.

Client:

Wyser Construction

Contact: Address:

17125 Sunset Road

Bothell, WA 98012

Date:

Test#

4/11/03

Project Number

03-100

Project Name:

Edmonds Unocal

Address:

Pine Street

Permit Number:

Time:

9:50:00 AM

Materal Data A

Material Description: Sand with minimal agg

Layer Thickness:

Unknown

Source:

6 3rd Lift

10 4th Lift

7

8

Rinker

Compaction Method: Vibratory Roller

PLEASE PER TEST DEVICE SOURCE

NA

Nuclear Gauge:

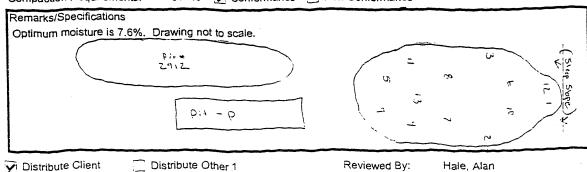
Troxler 3430 28462

Test Methods:

Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter

Servi Standard County (1984) 114 1662


Locations/Elevations

EabOlatory (Cacino 1100)	美國國際
Modified Proctor ASTM D1557	

W. Shinarr	Chilann	The second second		and the same of th	
Density Count		2666	Moisture Count:	622	
Wet De	ensity	Moisture%	Dry Density	Lab Density %C	ompaction
	114.9	8.3	106	112.4	94%
	114.6	8.4	105.7	112.4	94%
	112.8	3 7.2	105.2	112.4	94%
	112.	5 8.1	104	112.4	93%
	110.9	9 8	102.7	112.4	91%

Compaction Requirements:

90 %

Distribute Other 2

Tested By:

Distribute Engineer Distribute Municipality

Distribute Other 3

Norgar, Jason NO

Distribute Contractor

Distribute Architect

Test results indicate the density of the material at the above indicated locations, at the time and conditions when the test was conducted.

All reports are considered confidential and are the property of the citent and AAR Testing Laboratory Inc. Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

Report Number 3116

Smite@1014Redmond#V A.R. Festing Laboratory, Inc. 7126, 180th Ave Nu

Client:

Wyser Construction

Contact:

17125 Sunset Road Address:

Bothell, WA 98012

Date:

4/11/03

Project Number

03-100

NA

Project Name:

Edmonds Unocal

Address:

Time:

Pine Street

Permit Number:

9:50:00 AM

Material Data Land

Material Description: Sand with minimal agg

Layer Thickness:

Unknown

Source:

Rinker

Compaction Method: Vibratory Roller

Test Device

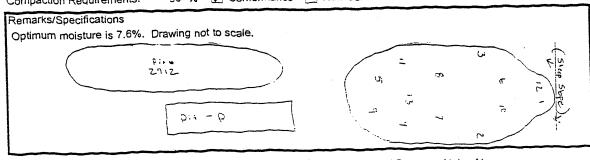
Troxler 3430 28462 Nuclear Gauge:

Soil ASTM D2922, ASTM D3017 Test Methods:

✓ DirectTransmission ☐ Back Scatter

Sandare Count

Modified Proctor ASTM D1557


2666 Moisture Count: Wet Density Moisture% Dry Density Lab Density %Compaction Locations/Elevations Test# 103.4 112.4 92% 1 2nd Lift for Water Main Pit, Area U See 9.1 112.8 Sketch 94% 105.4 112.4 9.3 115.1 2 92% 112.4 7.7 103.8 111.8 3 93% 112.4 8 104.9 113.3 94% 112.4 105.9 115 8.7 5

Compaction Requirements:

90 %

Conformance

Non Conformance

Distribute Client

Distribute Other 1 Distribute Engineer

Distribute Other 2

Reviewed By:

Hale, Alan

Distribute Other 3 Distribute Municipality

Norgar, Jason NO Tested By:

Distribute Contractor Distribute Architect

Test results indicate the density of the material at the above indicated locations, at the time and conditions when the test was conducted.

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. . Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

Report Number 3117

A.A.R. Festing Laboratory, Inc. 7/26/180th Ave. N.E. Park 180, Suite @101, Redmond, WA

Client:

Wyser Construction

Project Number

03-100

Contact:

Project Name:

Edmonds Unocal

Address:

17125 Sunset Road

Address:

Pine Street

Bothell, WA 98012

Permit Number:

NA

Date:

4/11/03

Time:

7:15:00 AM

Material Description: Sand with minimal agg

Unknown Layer Thickness:

Compaction Method: Vibratory Roller

Source:

Rinker

✓ DirectTransmission ☐ Back Scatter

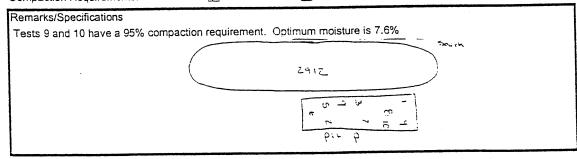
Troxler 3430 28462

Soil ASTM D2922, ASTM D3017

Rest Device Yn 344

Test Methods:

Nuclear Gauge:


Laboratory Test Methods

			Control of the Contro		Control of the second	
	Modified Proctor ASTM D1557	Den	sity Count:	2666	Moisture Count:	622
Test #	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density %0	Compaction
***************************************	6	112.7	7.9	104.4	112.4	93%
	7 Pit P 4th Lift See Sketch	112.5	7.8	104.4	112.4	93%
	8	112.8	9.3	103.2	112.4	92%
	9 Pit P Final Lift See Sketch	117.	5 9	107.8	112.4	96%
4		116.	4 8.6	107.2	112.4	95%

Compaction Requirements:

✓ Conformance

Non Conformance

Distribute Client

Distribute Other 1

Reviewed By:

Hale, Alan

Distribute Engineer Distribute Municipality

Distribute Other 2 Distribute Other 3

Tested By:

Norgar, Jason NO

Distribute Contractor Distribute Architect

Test results indicate the density of the material at the above indicated locations, at the time and conditions when the test was conducted.

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. .Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

Report Number 3117

A.A.R. Testing Laboratory, Inc. 7126 180th Ave N.E. Park 180, Smite C101, Redmond, WA

Client:

Wyser Construction

Contact: Address:

17125 Sunset Road

Bothell, WA 98012

Date:

4/11/03

Project Number

03-100

Project Name:

Edmonds Unocal

Address:

Pine Street

Permit Number:

NA

Time:

7:15:00 AM

Material Data 🔙

Material Description: Sand with minimal agg

Layer Thickness:

Unknown

Source:

Rinker

Compaction Method: Vibratory Roller

Test Device

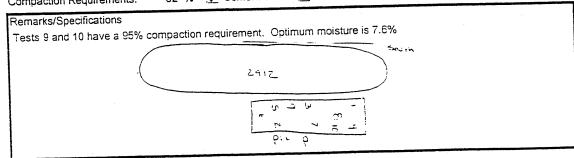
Troxler 3430 28462 Nuclear Gauge:

Test Methods:

Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter

Standard Count


	poratory Test Method: 152
`Modified	Proctor ASTM D1557

	THE RESERVE OF THE PARTY OF THE	Electrical Control of the Control of				
	Modified Proctor ASTM D1557	Den	sity Count:	2666	Moisture Coun	t: 622
Test #	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density %	Compaction
1	Pit P 1st Lift See Sketch	116.7	10	105.1	112.4	94%
2		114.7	9	105.2	112.4	94%
. 3	Pit P 2nd Lift See Sketch	112.3	2 8.9	103.1	112.4	92%
. 4		113.	5 9	104.2	112.4	93%
5	5 Pit P 3rd Lift See Sketch	111.	8 8	103.5	112.4	92%

Compaction Requirements:

92 % - Conformance

Non Conformance

✓ Distribute Client

Distribute Other 1

Reviewed By:

Hale, Alan

Distribute Engineer

Distribute Other 2

Norgar, Jason NO Tested By:

Distribute Municipality Distribute Contractor

Distribute Other 3

Test results indicate the density of the material at the above indicated locations, at the time

and conditions when the test was conducted. Distribute Architect

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. . Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

Report Number 3116

VA.R/Testing Laboratory Inc. 7/126/180th Ave. N.E. Park 180; Suite @101; Redmond, WA

Client:

Wyser Construction

Contact:

Address:

17125 Sunset Road

Bothell, WA 98012

Date:

4/11/03

Project Number

03-100

Project Name:

Edmonds Unocal

Address:

Pine Street

Permit Number:

Time:

9:50:00 AM

Material Data Links

Material Description: Sand with minimal agg

Layer Thickness:

Unknown

Source:

13

Rinker

Compaction Method: Vibratory Roller

Test Device A Les Les

Nuclear Gauge:

Troxler 3430 28462

Test Methods:

Soil ASTM D2922, ASTM D3017

☑ DirectTransmission ☐ Back Scatter

Value Laboratory jest Molinos (2252)

	A STATE OF THE PARTY OF THE PAR						
	Modified Proctor ASTM D1557	Den	Density Count:		2666 Moisture Count		
Test#	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density %	Compaction	
11		113.7	7 9.5	103.8	112.4	92%	
12		112.7	7 7.9	104.4	112.4	93%	
13		112.	8 8	104.4	112.4	93%	

Non Conformance ✓ Conformance Compaction Requirements: 90 % Remarks/Specifications Optimum moisture is 7.6%. Drawing not to scale.

Distribute Client

Distribute Other 1

Distribute Other 3

Reviewed By:

Hale, Alan

Distribute Engineer

Distribute Other 2

Tested By:

Norgar, Jason NO

Distribute Contractor

Distribute Municipality Distribute Architect

Test results indicate the density of the material at the above indicated locations, at the time and conditions when the test was conducted.

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

Report Number 3116

A. A.R. Testing Caboratory Inc. 71/26/180th Ave. N.E. Parks 80 Smite C101-Redmond, W.

Client:

Wyser Construction

Contact: Address:

17125 Sunset Road

Bothell, WA 98012

Date:

4/11/03

Project Number

03-100

Project Name:

Edmonds Unocal

Address:

Pine Street

NA

Permit Number:

Time:

9:50:00 AM

E Sanjar Company

Material Data

Material Description: Sand with minimal agg

Layer Thickness:

Unknown

Source:

Rinker

Compaction Method: Vibratory Roller

Test Device

Nuclear Gauge:

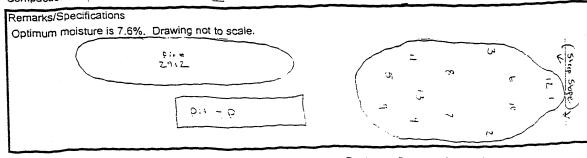
Troxler 3430 28462

Test Methods:

Soil ASTM D2922, ASTM D3017

☑ DirectTransmission ☐ Back Scatter

a salaboratory residence


			THE REAL PROPERTY OF THE PARTY		AND THE SAME	
	Modified Proctor ASTM D1557		Density Count		Moisture Cou	nt 622
Test#	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density	%Compaction
6 3	rd Lift	114.9	8.3	106	112.4	94%
7		114.6	8.4	105.7	112.4	94%
8		112.8	8 7.2	105.2	112.4	94%
9		112.	5 8.1	104	112.4	93%
10 4	th Lift	110.	9 8	102.7	112.4	. 91%

Compaction Requirements:

90 %

✓ Conformance

Non Conformance

Distribute Client

Distribute Other 1

Reviewed By:

Hale, Alan

Distribute Engineer

Distribute Other 2

Tested By:

Norgar, Jason NO

Distribute Municipality

Distribute Contractor Distribute Architect

Distribute Other 3 Test results indicate the density of the material at the above indicated locations, at the time

and conditions when the test was conducted.

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc., Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

A A.R. Testing Laboratory, Inc. 7126 180th Ave Saite & Or Execution of

Client:

Wyser Construction

Contact:

Address:

17125 Sunset Road

Bothell, WA 98012

Date:

4/11/03

Project Number

03-100

Project Name:

Edmonds Unocal

Address:

Pine Street

Permit Number:

NA

Time:

9:50:00 AM

製造工作Material Data はままれる

Material Description: Sand with minimal agg

Layer Thickness:

Unknown

Source:

Rinker

Compaction Method: Vibratory Roller

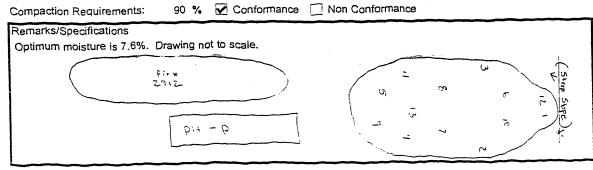
rest Device - 1.5.

Nuclear Gauge:

Troxler 3430 28462

Test Methods:

Soil ASTM D2922, ASTM D3017


✓ DirectTransmission ☐ Back Scatter

Laboratorys established to		OBLIGGIOUS COUNTY
Modified Proctor ASTM D1557	Density Count:	2666 Moisture Count:
Locations/Flevations	Wet Density Moisture%	Dry Density Lab Density %C

Test#	Locati	ons/Elevations	Wet Density	Moisture%	Dry Density	Lab Density	%Compaction
1	2nd Lift for Wate Sketch	r Main Pit, Area U See	112.8	9.1	103.4	112.4	92%
2			115.1	9.3	105.4	112.4	94%
3	i		111.8	7.7	103.8	112.4	92%
4			113.3	8	104.9	112.4	93%
5	5		115	5 8.7	105.9	112.4	94%

Compaction Requirements:

90 %

Distribute Client

Distribute Engineer

Distribute Municipality Distribute Contractor Distribute Architect

Distribute Other 1

Distribute Other 2 Distribute Other 3

Reviewed By: Tested By:

Hale, Alan

Norgar, Jason NO

Test results indicate the density of the material at the above indicated locations, at the time and conditions when the test was conducted.

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. .Reproduction except in full, without the written consent of AAR Testing is strictly forbladen.

Report Number 3119

A.A.R. Testing Laboratory, Inc. 7126-180th Ave. N.E. Bark 180. Suite £101, Redmond, WA

Client:

Wyser Construction

Contact:

Address:

17125 Sunset Road

Bothell, WA 98012

Date:

4/14/03

Project Number

03-100

Project Name:

Edmonds Unocal

Address:

Pine Street

Permit Number:

NA

Time:

11:50:00 AM

Material Data

Material Description: Sand with minimal agg

Layer Thickness:

Unknown

Source:

Rinker

Compaction Method: Vibratory Roller

Test Device

Nuclear Gauge:

Troxler 3430 28462

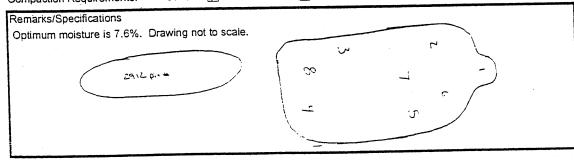
Test Methods:

Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter

Modified Proctor ASTM D1557

		, Standar	d count		
Den	sity Count:	2668	Moisture Count:	598	
neitr	Moisture%	Dry Density	Lab Density %Con	npaction	


Test#	Locations/Elevations	Wet Density N	10isture%	Dry Density	Lab Density %	Compaction
6 6th Lift		115.1	9.6	105	112.4	93%
7		113.7	9.9	103.5	112.4	92%
8		114.2	9.8	104	112.4	93%
9 🗸		115	9.9	104.6	112.4	93%

Compaction Requirements:

90 %

✓ Conformance

Non Conformance

Distribute Client

Distribute Other 1

Reviewed By:

Hale, Alan

Distribute Engineer Distribute Municipality Distribute Other 2 Distribute Other 3

Tested By:

Norgar, Jason NO

Distribute Contractor Distribute Architect

Test results indicate the density of the material at the above indicated locations, at the time and conditions when the test was conducted.

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. . Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

Report Number 3119

A:A:R Testing Laboratory Inc. 7126:180th Ave. N.E. Park 180: Suite C101, Redmond, WA

Client:

Wyser Construction

Project Number

03-100

Contact:

Address:

17125 Sunset Road

Edmonds Unocal

Address:

Pine Street

Bothell, WA 98012

Permit Number:

Project Name:

NA

Date:

4/14/03

Time:

11:50:00 AM

lest Device

Material Data

Material Description: Sand with minimal agg

Layer Thickness:

Source:

Unknown

Rinker

Nuclear Gauge:

Troxler 3430 28462

Test Methods:

Soil ASTM D2922, ASTM D3017

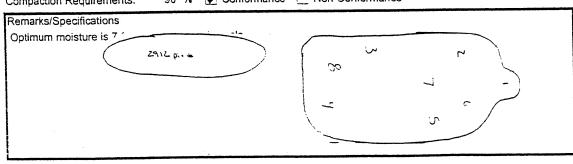
✓ DirectTransmission ☐ Back Scatter

Compaction Method: Vibratory Roller

	200.00	
-	Density Cour	nt

2668 Moisture Count:

508


	Modified Proctor ASTM D1557	Density Count		2508	Moisture Court.	290
Test #	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density %C	Compaction
1	5th Lift for Pit U-Water Main See Sketch	114.7	8.5	105.7	112.4	94%
2		112.9	9	103.6	112.4	92%
3		114.8	8.7	105.6	112.4	94%
4		113.7	7 8.6	104.7	112.4	93%
5		113.5	5 8.4	104.7	112.4	93%

Compaction Requirements:

90 %

✓ Conformance

Non Conformance

Distribute Client

Distribute Other 1

Reviewed By:

Hale, Alan

Distribute Engineer

Distribute Other 2 Distribute Other 3 Tested By:

Norgar, Jason NO

Distribute Municipality

Distribute Architect

Distribute Contractor

Test results indicate the density of the material at the above indicated locations, at the time and conditions when the test was conducted.

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. .Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

Report Number 3110

A.A.R. Testing Daboratory line 7/126-180th Ave. N.E. Park (80 Suite C1015 Redmond WA 98052 Phone 42

Client:

Wyser Construction

Project Number

03-100

Contact:

Address:

Project Name:

Edmonds Unocal

17125 Sunset Road

Address:

Pine Street

Bothell, WA 98012

Permit Number:

NA

Date:

4/15/03

Time:

7:30:00 AM

Majerial Data:

Material Description: Sand with minimal agg

Layer Thickness:

Unknown

Source:

Rinker

Compaction Method: Vibratory Roller

Fest Device

Nuclear Gauge: Troxler 3430 28462

Test Methods:

Soil ASTM D2922, ASTM D3017

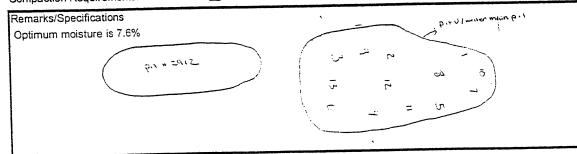
☑ DirectTransmission ☐ Back Scatter

alianoi atory a rest Methods ?

Modified Proctor ASTM D1557

	Marie Marie House	A SHARE WEST SHARES	Sample of the Sa
Density Count:	2641	Moisture Count:	630
city Moisture% C	ny Density	Lab Density %Com	paction

Every Sender County - 27


Test#	Locations/Elevations	Wet Density Mois	sture%	Dry Density	Lab Density S	%Compaction
11		114.9	9.6	104.8	112.4	93%
12		114.6	8.3	105.8	112.4	94%
13		113.7	8.9	104.4	112.4	93%

Compaction Requirements:

92 %

✓ Conformance

Non Conformance

✓ Distribute Client

Distribute Other 1

Reviewed By:

Haie, Alan

Distribute Engineer

Distribute Other 2

Tested By:

Norgar, Jason NO

Distribute Municipality

Distribute Other 3

Distribute Contractor

Test results indicate the density of the material at the above indicated locations, at the time

Distribute Architect

AR Testing is strictly forbidden.

and conditions when the test was conducted. All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. .Reproduction except in full, without the written consent of

Report Number 3110

A.A.R. Testing Laboratory, Inc. 7126 180th Ave. N.E., Rark 180, Stute C101, Redmond, WA

Client:

Wyser Construction

Project Number

03-100

Contact:

Project Name:

Edmonds Unocal

Address:

17125 Sunset Road

Address:

Pine Street

Bothell, WA 98012

Permit Number:

NA

Date:

4/15/03

Time:

7:30:00 AM

Material Data Lect.

Material Description: Sand with minimal agg

Layer Thickness:

Unknown

Source:

Rinker

Compaction Method: Vibratory Roller

Martest Device - 1 - 2 - 2 - 2

Troxler 3430 28462 Nuclear Gauge:

Test Methods:

Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter


Capparatory restancings

		32 13				
	Modified Proctor ASTM D1557	Den	sity Count	2641	Moisture Cour	nt: 630
Test#	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density %	6Compaction
6	8th Lift for Pit U/Water Main See Sketch	112.7	9.5	102.9	112.4	92%
7		113.6	9.4	103.8	112.4	92%
8		114	10.1	103.5	112.4	92%
9		112.5	8.9	103.3	112.4	92%
10	9th Lift for Pit U/Water Main See Sketch	115.2	11.2	103.6	112.4	92%

Compaction Requirements:

✓ Conformance

Non Conformance

and conditions when the test was conducted.

Distribute Client

Distribute Other 1

Reviewed By:

Hale, Alan

Distribute Engineer

Distribute Other 2

Tested By:

Norgar, Jason NO

Distribute Municipality Distribute Contractor

Distribute Other 3

Test results indicate the density of the material at the above indicated locations, at the time

Distribute Architect

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. .Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

Report Number 3110

A.A.R. Festing Faboratory Inc. 2126-180th Ave. N.F. Park 180, Strite @101, Redmond AW.

Client:

Wyser Construction

Project Number Project Name:

03-100

Contact: Address:

17125 Sunset Road

Edmonds Unocal

Address:

Pine Street

Bothell, WA 98012

Permit Number:

NA

Date:

4/15/03

Time:

7:30:00 AM

103.9

Material Data 🛰

Material Description: Sand with minimal agg

Layer Thickness: Source:

Unknown

Rinker

Compaction Method: Vibratory Roller

Test Device Laber 2

Troxler 3430 28462 Nuclear Gauge:

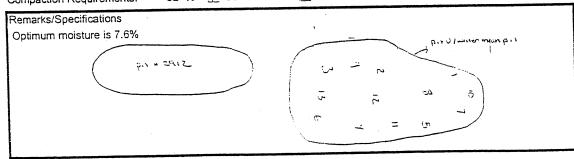
Test Methods:

Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter

112.4

92%


Company in the same of the sam					
- Laboratory resemethods			Standar	o South	
Modified Proctor ASTM D1557	Den	Density Count		Moisture Count	630
Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density %0	Compaction
7th Lift for Pit U/Water Main See Sketch	113.6	5 9	104.2	112.4	93%
	112.7	9.1	103.3	112.4	92%
	112.9	9.3	103.3	112.4	92%
	114.	1 10	103.7	112.4	92%
	Modified Proctor ASTM D1557 Locations/Elevations	Modified Proctor ASTM D1557 Locations/Elevations Wet Density 7th Lift for Pit U/Water Main See Sketch 113.6 112.7	Modified Proctor ASTM D1557 Density Count Locations/Elevations Wet Density Moisture% 7th Lift for Pit U/Water Main See Sketch 113.6 9 112.7 9.1 112.9 9.3	Modified Proctor ASTM D1557 Locations/Elevations Wet Density Count Locations/Elevations Wet Density Moisture% Dry Density 7th Lift for Pit U/Water Main See Sketch 113.6 9 104.2 112.7 9.1 103.3	Modified Proctor ASTM D1557 Locations/Elevations Wet Density Moisture% Dry Density Lab Density %C 7th Lift for Pit U/Water Main See Sketch 113.6 9 104.2 112.4 112.7 9.1 103.3 112.4

113.2

Compaction Requirements:

✓ Conformance

Non Conformance

✓ Distribute Client

Distribute Other 1

Reviewed By:

Hale, Alan

Distribute Engineer

Distribute Other 2

Tested By:

Norgar, Jason NO

Distribute Municipality : Distribute Contractor

Distribute Architect

Distribute Other 3

Test results indicate the density of the material at the above indicated locations, at the time and conditions when the test was conducted.

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. .Reproduction except in full, without the written consent of AAR Testing is strictly forbiaden.

Report Number 3111

N.E.: Park 180 Suite C101, Redmond; WA

Client:

Wyser Construction

Project Number Project Name:

03-100

Contact: Address:

17125 Sunset Road

Edmonds Unocal

Address:

Pine Street

Bothell, WA 98012

Permit Number:

NA

Date:

4/15/03

Time:

10:30:00 AM

Material Data

Material Description: Sand with minimal agg

Layer Thickness:

Source:

Unknown

Compaction Method: Vibratory Roller

Rinker

Nuclear Gauge: Test Methods:

9.9

Troxler 3430 28462

Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter

112.4

112.4

93%

Laboratory Test Method

Locations/Elevations

Modified Proctor ASTM D1557

A STATE OF THE PARTY OF THE PAR	77.00	第二章 主题的	はなるという。 本がなかる	A STEEL OF THE PARTY OF	HARL GOOD TO A TANK		
Density Count:			2641	2641 Moisture Count:			
Wet D	ensity	Moisture%	Dry Density	Lab Density %0	Compaction		
	115.4	10.1	104.8	112.4	93%		
	114.9	10.2	104.2	112.4	93%		
	115.4	11.1	103.8	112,4	92%		

103.8

104.7

6

Test #

Non Conformance ✓ Conformance Compaction Requirements: 90 %

Remarks/Specifications Optimum moisture is 7.6%. Drawing not to scale.

115.4

115.1

✓ Distribute Client

Distribute Other 1

Reviewed By:

Hale, Alan

Distribute Engineer

Distribute Other 2

Tested By:

Norgar, Jason NO

Distribute Municipality

Distribute Other 3

Test results indicate the density of the material at the above indicated locations, at the time

Distribute Contractor Distribute Architect

and conditions when the test was conducted.

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. . Reproduction except in full, without the written consent of AR Testing is strictly forbidgen.

Report Number 3111

A.A.R. Testing Laboratory, Inc. 1912 6-180th Ave. N.E. Park 180 Smite C101 Redmond WA 980524Phone 425 881 58 12 155 42 5 881 5

Client:

Wyser Construction

Project Number Project Name:

03-100

Contact:

Edmonds Unocal

17125 Sunset Road

Address:

Pine Street

Bothell, WA 98012

Permit Number:

Date:

Address:

4/15/03

Time:

10:30:00 AM

· ្រី Macral ១៩៩ 🕒

Material Description: Sand with minimal agg

Unknown

Source:

Layer Thickness:

Rinker

Compaction Method: Vibratory Roller

Jest Device

NA

Troxler 3430 28462 Nuclear Gauge:

Test Methods:

Soil ASTM D2922, ASTM D3017

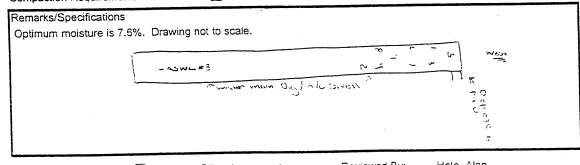
✓ DirectTransmission ☐ Back Scatter

aboratory rest Method ::

Density Count

2641 Moisture Count

Sandard Count


630

	Modified Proctor A5 IM D 1337	Dett	Sity Court	2041	moloidio oddiii	
Test #	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density %C	ompaction
1 1st	: Lift over filter fabric See sketch	114.2	11.4	102.5	112.4	91%
2		113.7	7 9.7	103.6	112.4	92%
3 2n	d Lift	113.9	9 9.2	104.3	112.4	93%
4		11	4 9.5	104.1	112.4	93%
5 3rd	Lift	113.	7 9.2	104.1	112.4	93%
	1.					

Compaction Requirements:

Conformance

Non Conformance

Distribute Client

Distribute Other 1

Reviewed By:

Hale, Alan

Distribute Engineer

Distribute Other 2

Tested By:

Norgar, Jason NO

Distribute Municipality Distribute Contractor

Distribute Other 3

Test results indicate the density of the material at the above indicated locations, at the time

Distribute Architect

and conditions when the test was conducted.

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. .Reproduction except in full, without the written consent of AAR Testing is strictly forbidgen.

Report Number 3192

N.E. Park 180, Suite C101, Redmond, WA

Client:

Wyser Construction

Contact:

Address:

17125 Sunset Road

Bothell, WA 98012

Date:

4/18/03

Project Number

03-100

Project Name:

Edmonds Unocal

Address:

Pine Street

Permit Number:

NA

Time:

12:00:00 PM

Materia Data

Material Description: Sand with minimal agg

Layer Thickness:

Unknown

Source:

Rinker

Compaction Method: Hoe Pack

Distribute Municipality Distribute Other 3

Distribute Contractor

Test Device

Nuclear Gauge:

Troxler 3430 21240

Test Methods:

Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter

	aborator (est Method		Standard Count					
	Modified Proctor ASTM D1557	Density Count:		2284	Moisture Count	nt: 584		
Test #	Locations/Elevations	Wet Density	Moisture%	Dry Density	Lab Density %0	Compaction		
11	6th Lift	115.7	10.7	104.5	112.4	93%		
12		114.9	11.2	103.3	112.4	92%		
13	7th Lift	116.6	5 11.1	104.9	112.4	93%		
14		116.5	5 12.3	103.7	112.4	92%		

Compaction Requiremen	ts: 90 %	✓ Conformance	Non Conformance	
Remarks/Specifications Optimum moisture is 7.6	5%.			
✓ Distribute Client Distribute Engineer	Distribute (Reviewed By: Tested By:	Hale, Alan Randolph, Tara

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. .Reproduction except in full, without the written consent of

and conditions when the test was conducted.

Test results indicate the density of the material at the above indicated locations, at the time

Report Number 3192

Client:

Wyser Construction

Project Number Project Name:

03-100

Contact:

Address:

17125 Sunset Road

Address:

Edmonds Unocal

Pine Street

Bothell, WA 98012

Permit Number:

NA

Date:

4/18/03

Time:

12:00:00 PM

Material Data

Material Description: Sand with minimal agg

Layer Thickness:

Unknown

Source:

Rinker

Compaction Method: Hoe Pack

Test Device

Nuclear Gauge:

Troxier 3430 21240

Test Methods:

Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter

Laboratory Test Method

Modified Proctor ASTM D1557		Density Count:		2284	Moisture Count	584	
Test#	Locations/Elevations		Wet Density	Moisture%	Dry Density	Lab Density %Co	ompaction
6	ľ	i	112.8	11.8	100.9	112.4	90%
7	4	↓ 4th Lift	114.3	3 11.5	102.5	112.4	91%
8			113.9	11.3	102.3	112.4	91%
9		5th Lift	116.2	2 11.4	104.5	112.4	93%
10	\downarrow	1	116.	5 10.9	105	112.4	93%

Composition	Requirements
Combaction	Vedanemenre

Remarks/Specifications			
Optimum moisture is 7.6%.			

Distribute Other 1

Reviewed By:

Hale, Alan

Distribute Engineer Distribute Municipality

Distribute Other 2

Tested By:

Randolph, Tara

Distribute Contractor Distribute Architect

Distribute Other 3

Test results indicate the density of the material at the above indicated locations, at the time and conditions when the test was conducted.

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. .Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

Report Number 3192

A.A.R Testing Laboratory, Inc. 7126 180th Ave. N.E. Park 180, Suite C101, Redmond,

Client:

17125 Sunset Road Bothell, WA 98012

Contact:

Address:

Wyser Construction

03-100

Project Number Project Name:

Edmonds Unocal

Address:

Pine Street

Permit Number:

NA

Date:

4/18/03

Time:

12:00:00 PM

Material Data

Material Description: Sand with minimal agg

Layer Thickness:

Unknown

Source:

Rinker

Compaction Method: Hoe Pack

Nuclear Gauge:

Troxler 3430 21240

Test Methods:

Soil ASTM D2922, ASTM D3017

✓ DirectTransmission ☐ Back Scatter

Laboratory Test: Method.

	Control of the Contro						
	Modified Proctor ASTM D1557		Den	Density Count: 228		Moisture Cou	nt: 584
Test#	Locations/Elevation	s	Wet Density	Moisture%	Dry Density	Lab Density	%Compaction
1	Receiving Storm Catch Basin	1st Lift	114.4	10.9	103.2	112.4	92%
2			115.2	2 11.1	103.6	112.4	92%
3		2nd Lift	115.9	10.8	104.6	112.4	93%
4			115.2	2 12.2	102.7	112.4	91%
5	\downarrow	3rd Lift	113.4	4 11	102.2	112.4	91%

Compaction Requirements:

90 %

✓ Conformance

Non Conformance

F	Remarks/Specifications
ŀ	Optimum moisture is 7.6%.
١	
l	
١	
١	
١	
1	
١	
L	

_	District.	01:4
~	Distribute	Cilent

Distribute Other 1

Reviewed By:

Hale, Alan

Distribute Engineer

Distribute Other 2

Tested By:

Randolph, Tara

Distribute Other 3

Distribute Contractor Distribute Architect

Test results indicate the density of the material at the above indicated locations, at the time and conditions when the test was conducted.

All reports are considered confidential and are the property of the citent and AAR Testing Laboratory Inc. Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.

Report Number 4954

A.A.R. Testing Laboratory, Inc. 7126 180th Ave.: N.E., Park 180, Suite C101, Redmond, WA 98052 Phone 425.881.5812 Fax 425.881.5441

Client:

Wyser Construction

Project Number

03-100

Contact:

Project Name: Address:

Edmonds Unical

Address:

17125 Sunset Road

Permit Number:

Pine Street

Bothell, WA 98012

NA

Date:

1/7/03

Time:

9:00:00 AM

Test Device

Troxler 3430 28462

Standard Count

Material Data

Material Description: Import pit sand

Layer Thickness:

12" lifts, approximate

Source:

Rinker-Everett

✓ DirectTransmission ☐ Back Scatter

Nuclear Gauge:

Test Methods:

Soil ASTM D2922, ASTM D3017

Compaction Method: Roller

Locations/Elevations

Laboratory test metricu
Modified Proctor ASTM D1557

Density Count:			Moisture Count:	64
ensity	Moisture%	Dry Density	Lab Density %Compac	tion

Test#	Locations/Elevations
1	-4' from grade/See Field Report for locations

2 -4' from grade

3 -2' from grade

Wet Density M	loisture% Dr	y Density Lab	Density %Co	mpacaon
120.3	12.4	107.1	118	91%
120	12.4	106.8	118	91%
122.1	11.7	109.3	118	93%

Compaction Requirements:

✓ Conformance

Non Conformance

Remarks/Specifications Proctor supplied by Rinker

See Field Report #33828 for map Optimum moisture @ 8.0%

Distribute Client

Distribute Other 1

Reviewed By:

Alan Hale

Distribute Engineer

Distribute Other 2

Tested By:

Norgar, Jason NO

Distribute Municipality Distribute Contractor

Distribute Other 3 Test results indicate the density of the material at the above indicated locations, at the time

and conditions when the test was conducted.

All reports are considered confidential and are the property of the client and AAR Testing Laboratory Inc. .Reproduction except in full, without the written consent of AAR Testing is strictly forbidden.